
Coefficient of  DeterminationPartial

 As the R  provides information about the SSR(X ,X ,X ), there are also2
" # $

 Coefficients of PARTIAL Determination : this measures “how much
variation a variable accounts for out of the variation available to that
variable when it enters".  This gives a proportional measure of the
contribution of each variable after all other variables are in the model.

  eg. Y = b   b X   b X   b X  + e! " "3 # #3 $ $3 3  

 Take X#

What is the Coefficient of Partial Determination?

 1) How much did the variable account for? (after other variables partial)p
  SSR(X |X ,X ) = 1.502621# " $

 2) What SS was available to it when it entered the model.

  SSE(X ,X )  = SSE(X ,X ,X ) + SSR(X |X ,X )" $ " # $ # " $

    = 61.443 +230.62548 = 292.06848

 Partial R  = r  =  = 0.7896281 = 78.96281%2 2
X |X X .

230.62548
292.06848# " $ß # "$

  
 These calculations are available from SAS PROC REG with the / PCORR2

option on the MODEL statement.



SAS will also produce a Partial Correlation of the TYPE I SS.

Output from PROC REG
Parameter Estimates
                 Parameter     Standard
Standardized
Variable   DF     Estimate        Error  t Value  Pr > |t|
Intercept   1     17.84693      2.00188     8.92    <.0001
X1          1      1.10313      0.32957     3.35    0.0032
X2          1      0.32152      0.03711     8.66    <.0001
X3          1      1.28894      0.29848     4.32    0.0003

                                                             Squared
                                          Standardized  Semi-partial
Variable  DF     Type I SS    Type II SS      Estimate   Corr Type I
INTERCEP   1         37446    244.171679    0.00000000     .
X1         1    306.732328     34.418508    0.26023468    0.44501687
X2         1    263.794445    230.625476    0.65915439    0.38272125
X3         1     57.290222     57.290222    0.30693999    0.08311845

                   Squared       Squared       Squared
                   Partial  Semi-partial       Partial
Variable  DF   Corr Type I  Corr Type II  Corr Type II     Tolerance
INTERCEP   1     .             .             .             .
X1         1    0.44501687    0.04993545    0.35904408    0.73735836
X2         1    0.68960879    0.33459866    0.78962809    0.77010493
X3         1    0.48251214    0.08311845    0.48251214    0.88224762



Standardized Regression Coefficients

This technique addresses two aspects of estimating  values"5

1) There is some potential difficulty with rounding errors in the calculations,
particularly for the (X X)  matrix calculations.w "-

 These roundoff errors are aggravated by (1) more variables in the model, (2)
multicolinearity and (3) b values of very different magnitudes.

 Standardized regression coefficients can help with the last problem.

2) The magnitude of the regression coefficients cannot be compared.

 Since the regression coefficients have units which are  , they will varyY units
X unit

with the units of X and Y.

 eg.  If different people do the same study and various investigators take
measurements on X  in (1) inches, (2) feet, (3) meters and (4) mm, then"

the same study will very different values for b ."

 The same is true of if a dependent variable (Y) is measured in (1) dollars,
(2) thousands of dollars, or (3) median family income units (multiples of
about 18 thousand).

 As a result of these scaling factors, the regression coefficients have an
interpretation in terms of the regression coefficients, but the regression
coefficients will differ for different units, and must be examined within
the context of those units.

 Standardized Regression Coefficients, however, have no units, but their size
can be interpreted as a measure of impact or importance of each variable
on the calculation of the predicted value.



There are several ways to calculated Standardized Regression Coefficients
 1) The variables can be “standardized" prior to doing the regression

  Y  =  w
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 where s  and s  are ordinary standard deviationsY x5

 regression on these variables gives the standardized regression model

  Y   =  X   +  X   +  X   +  3 3
w w w w w w
" # $" # $" " " %i i i

 where  = 0"!

2) If the matrix calculations are done with the standardized values of X and Y,
then the X X and and X Y matrices arew w
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Note that there is no row for the intercept

so, another way to get the standardized regression coefficients is to calculated the
matrix formula for B = (X X) X Y using the correlation matrices, orw " w-

B =(R ) Rw
\\ \]

-1

3) There is also a relationship between the standardized regression coefficient and
the ordinary least squares regression coefficient.  The relationship is

   =  " "5
w
5  s

s
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 The interpretation of the standardized regression coefficient is as a measure
of relative impact on the calculations or as relative importance of the
variable to the model.

 The size of the variable is not longer influenced by units, and standardized
regression coefficients are unitless.

 The SIGN of the regression coefficient is retained, so negative and positive
effects can still be interpreted.

Example : The standard deviations are given by (for the mathematician example)

  s  =      =      =  5.47429]
 Ê ÊDY 38135.26
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 all values are available from the X X, X Y and Y Y matricesw w w

Interpretation

 1) Size of value (magnitude, regardless of sign) is important.  This is an
indicator of "importance", or impact in the calculation of the predicted
value.  This would generally agree with observations and evaluations
made by P>|t| and SSII and Partial R , but not always.2

 2) The SIGN is important, and will match the sign on the regression
coefficient.



Effect of Correlation among the X  variables5

1) If the X  variables are uncorrelated, then they will describe a certain variation5

whether alone or in concert with other variables,
 and the variables describe the same variation no matter which other

variables they are adjusted for.

 Also the regression coefficients will stay the same, will be stable

 There are several ways of creating this type of design.
 a) Orthogonal variables : result from transformation which extract the

attributes of a variable while retaining a 0 correlation with other
variables.

 orthogonal polynomial multipliers are a good example of this (from any
table)

Orthogonal Polynomial Multipliers (equally spaced X) variable with 5 levels
 X =     1   2   3   4         5
 Linear   -2  -1   0   1         2
 Quadratic   2  -1  -2  -1         2
 Cubic   -1   2   0  -2         1
 Quartic   1  -4   6  -4         1
 Note that all crossproducts sum to zero

 b) Some multivariate analyses (such as PCA) will create orthogonal
variables, these can be used as independent variables

 c) many designed experiments are orthogonal, factorials are a good example

 eg. 2x2x2 factorial
  Test A B AB C AC BC ABC
  X =  -1 -1  1 -1  1  1 -1  abc
    1 -1 -1 -1 -1  1  1  Abc
   -1  1 -1 -1  1 -1  1  aBc
    1  1  1 -1 -1 -1 -1  ABc
   -1 -1  1  1 -1 -1  1  abC
    1 -1 -1  1  1 -1 -1  AbC
   -1  1 -1  1 -1  1 -1  aBC
    1  1  1  1  1  1  1  ABC



What happens to the EXTRA SS?  If X  and X  are uncorrelated, then" #

  SSR(X ) = SSR(X |X )" " #

  SSR(X ) = SSR(X |X )# # "

 each variable is uninfluenced by the other in terms of its SSR.

 Another type of uncorrelated example is given in the text where each level
of one variable occurs at each level of another variable.  These will be
uncorrelated even though the variables are quantitative.

Example
DATA ONE; INFILE CARDS MISSOVER;
     TITLE1 'EXST7034 - Example NWK Table 8.7 :

Uncorrelated variables';
     LABEL Y = 'Crew Productivity Score';
   INPUT TRIAL CREWSIZE BONUSPAY Y;
CARDS; RUN;
 1   4   2   42
 2   4   2   39
 3   4   3   48
 4   4   3   51
 5   6   2   49
 6   6   2   53
 7   6   3   61
 8   6   3   60
;

PROC REG DATA=ONE; TITLE2 'All models in PROC REG';
        MODEL  Y = BONUSPAY;
        MODEL  Y = CREWSIZE;
        MODEL  Y = CREWSIZE BONUSPAY / SS2; RUN;

Note from the handout that:
 1) The two fitted together account for the sum of the SS of each individually
 2) The regression coefficients of the two together do not change
 3) EVEN THOUGH THE TWO ARE INDEPENDENT,
 the two alone were not significant (0.0885) or barely sig (0.0351)

 but together both were highly significant.  This is due entirely to the
reduction of the error variance term.



EXST7034 - Example NWK Table 8.7 : Uncorrelated variables
All models in PROC REG
Model: MODEL1
Dependent Variable: Y          Crew Productivity Score
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1    171.12500    171.12500        4.128       0.0885
Error            6    248.75000     41.45833
C Total          7    419.87500

Parameter Estimates
                 Parameter      Standard    T for H0:                 Variable
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|     Label
INTERCEP   1     27.250000   11.60773808         2.348        0.0572  Intercept
BONUSPAY   1      9.250000    4.55292946         2.032        0.0885

Model: MODEL2
Dependent Variable: Y          Crew Productivity Score
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1    231.12500    231.12500        7.347       0.0351
Error            6    188.75000     31.45833
C Total          7    419.87500

Parameter Estimates
                 Parameter      Standard    T for H0:                 Variable
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|     Label

INTERCEP   1     23.500000   10.11135912         2.324        0.0591  Intercept
CREWSIZE   1      5.375000    1.98300067         2.711        0.0351

Model: MODEL3
Dependent Variable: Y          Crew Productivity Score
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            2    402.25000    201.12500       57.057       0.0004
Error            5     17.62500      3.52500
C Total          7    419.87500

Parameter Estimates
                 Parameter      Standard    T for H0:

Variable
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|    Type II SS

Label

INTERCEP   1      0.375000    4.74045093         0.079        0.9400      0.022059
Intercept

CREWSIZE   1      5.375000    0.66379590         8.097        0.0005    231.125000
BONUSPAY   1      9.250000    1.32759180         6.968        0.0009    171.125000



Multicolinearity : strong relationship between two variables (high correlation)

2) Strong correlations are easy to detect if a single X is correlated to another,
however, one variable may be correlated to a linear combination of other
variables.  (eg.  X  X  + X X )" # $ %¸ 

 When variables are highly correlated, the effects may not adversely effect
our predictive ability,

 but, the regressions coefficients are usually way off (unbiased, but off).

 As a result, they are not useful as estimates of the rates we often desire, and
holding one constant while varying another to examine the effect is not a
fruitful exercise.

 Standardization of the variables may help in stabilizing the variance

 This is not usually a serious problem until correlations are “quite high".

 Perfect correlations among the X variables results in a matrix which cannot
be inverted (the determinant is 0)

 this is referred to as  Singularity
     Ill condition matrix
     Matrix not of full rank
   (ie. cannot fit as many variables as there are columns)



Examples of some perfectly correlated variables
DATA TWO; INFILE CARDS MISSOVER;
     TITLE1 'EXST7034 - Example NWK Table 8.8 :

Perfectly correlated variables';
   INPUT CASE X1 X2 Y;
CARDS; RUN;
1   2    6     23
2   8    9     83
3   6    8     63
4  10   10    103
;

PROC REG DATA=TWO; TITLE2 'Generic example';
        MODEL  Y = X1;
        MODEL  Y = X2;
        MODEL  Y = X1 X2 / SS2; RUN;

DATA TWO; INFILE CARDS MISSOVER;
     TITLE1 'EXST7034 - Modified example NWK Table 8.8

: Perfectly correlated independent variables';
   INPUT CASE X1 X2 Y;
CARDS; RUN;
1   2    6     23
2   8   12     83
3   7   11     63
4  10   14    103
;
PROC REG DATA=TWO; TITLE2 'Modified generic example';
        MODEL  Y = X1;
        MODEL  Y = X2;
        MODEL  Y = X1 X2 / SS2; RUN;



EXST7034 - Example NWK Table 8.8 : Perfectly correlated variables
Generic example

Model: MODEL1            Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3500.00000   3500.00000         .           .
Error            2      0.00000      0.00000
C Total          3   3500.00000
Parameter Estimates
                 Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|
INTERCEP   1      3.000000    0.00000000          .            .
X1         1     10.000000    0.00000000          .            .

Generic example
Model: MODEL2            Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3500.00000   3500.00000         .           .
Error            2      0.00000      0.00000
C Total          3   3500.00000
Parameter Estimates
                 Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|
INTERCEP   1    -97.000000    0.00000000          .            .
X2         1     20.000000    0.00000000          .            .

Generic example
Model: MODEL3            Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3500.00000   3500.00000         .           .
Error            2      0.00000      0.00000
C Total          3   3500.00000
NOTE: Model is not full rank. Least-squares solutions for the parameters are

not unique. Some statistics will be misleading. A reported DF of 0 or
B means that the estimate is biased.  The following parameters have
been set to 0, since the variables are a linear combination of other
variables as shown.

       X2       = +5.0000 * INTERCEP +0.5000 * X1
Parameter Estimates
               Parameter    Standard    T for H0:
Variable  DF   Estimate       Error   Parameter=0    Prob > |T|    Type II SS
INTERCEP   B   3.000000  0.00000000          .            .          6.176471
X1         B  10.000000  0.00000000          .            .       3500.000000
X2         0          0  0.00000000          .            .                 .



EXST7034 - Modified example NWK Table 8.8 : Perfectly correlated independent
variables

Modified generic example

Model: MODEL1            Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3425.17986   3425.17986       91.558       0.0107
Error            2     74.82014     37.41007
C Total          3   3500.00000
Parameter Estimates
                 Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|
INTERCEP   1      0.985612    7.64217078         0.129        0.9092
X1         1      9.928058    1.03756871         9.569        0.0107

Modified generic example
Model: MODEL2           Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3425.17986   3425.17986       91.558       0.0107
Error            2     74.82014     37.41007
C Total          3   3500.00000
Parameter Estimates
                 Parameter      Standard    T for H0:
Variable  DF      Estimate         Error   Parameter=0    Prob > |T|
INTERCEP   1    -38.726619   11.56551739        -3.348        0.0788
X2         1      9.928058    1.03756871         9.569        0.0107

Modified generic example
Model: MODEL3            Dependent Variable: Y
Analysis of Variance
                         Sum of         Mean
Source          DF      Squares       Square      F Value       Prob>F
Model            1   3425.17986   3425.17986       91.558       0.0107
Error            2     74.82014     37.41007
C Total          3   3500.00000

NOTE: Model is not full rank. Least-squares solutions for the parameters are
not unique. Some statistics will be misleading. A reported DF of 0 or
B means that the estimate is biased.

The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

       X2       = +4.0000 * INTERCEP +1.0000 * X1

Parameter Estimates
              Parameter    Standard    T for H0:
Variable  DF   Estimate       Error   Parameter=0    Prob > |T|    Type II SS
INTERCEP   B   0.985612  7.64217078         0.129        0.9092      0.622252
X1         B   9.928058  1.03756871         9.569        0.0107   3425.179856
X2         0          0  0.00000000          .            .                 .



Note that with perfect correlation between X  and X  and Y," #

 1) No error terms (ie.  =0) , perfect fits every time ,  no testsp

 2) Only one needed to fit when the two are put together

 3) SAS warns “not full rank" when the two are put together (but not alone).

Note that with perfect correlation between several X variables, but not with Y
 1) You may get decent fits of each variable alone, but if there are two

perfectly correlated variables the fits are identical

 2) Only one fitted when the two are put together, and this matches the fits
alone

 3) SAS warns “not full rank".

The text makes an issue of the fact that with perfect correlation, an infinite number
of models can be obtained.  In practice, most software will bomb or detect
the problem.  We will see various diagnostics later (Ch 11, we are in 8)
which will detect the problem.

sample problem
 Obs X1   X2  Y
    1   1   2
    2   2   4
    3   3    6
 all perfectly correlated,
this could be fitted by  Y = 1*X1 + 1*X2
 Y = 0*X1 + 2*X2
 Y = 2*X1 + 0*X2
 Y = 0.5*X1 + 1.5*X2
 Y = 1.5*X1 + 0.5*X2
 Y = 1.3*X1 + 0.7*X2
 Y = 102*X1 - 100*X2
or any other model where b  + b  = 2" #

This results whenever two variables are perfectly correlated and there is a perfect
fit with no error.

It is clear that the regression coefficients cannot be interpreted



What if the correlations are just high, not perfect?

1) We have no problem getting a good fit, but regressions coefficients will not be
stable (they will vary widely from sample to sample).

 Also, the fact that the reg coeff for each X are unstable makes prediction
outside the range of that X untenable.

Parameter Estimates
                      Parameter          Standard
Variable       DF      Estimate             Error

X1              1      0.857187        0.12878079
X1|X2           1      0.222353        0.30343892
X1|X3           1      1.000585        0.12823209
X1|X2,X3        1      4.334092        3.01551136

X2              1      0.856547        0.11001562
X2|X1           1      0.659422        0.29118728
X2|X3           1      0.850882        0.11244824
X2|X1,X3        1     -2.856848        2.58201527

X3              1      0.199429        0.32662975
X3|X1           1     -0.431442        0.17661556
X3|X2           1      0.096029        0.16139267
X3|X1,X2        1     -2.186060        1.59549900

Note that as more variables are added to the model, the regression coefficients
vary greatly, and the standard errors generally increase.

However, even as the standard errors increase, the MSE decreases and the
precision on the predicted value may be quite acceptable.

Recall that we do not assume that the covariance is 0 when calculating s  , so the
]̂

strong correlation between variables may also be influenced by strong
negative or positive covariances

2) The whole idea of “holding one X constant" while varying another goes against
the “high correlation" between variables.  If we vary one, the other should
vary in a predictable fashion as well.

Suppose the variables “surface temperature" and “bottom temperature" are used to
predict the abundance of shrimp.  Since these vary together, how far can
we realistically vary one while holding the other constant?



The text book recommends simple correlations, this is a useful diagnostic for
many situations,

but this will not detect the most insidious Multicolinearity problems
We will later discuss some more serious diagnostics.

Pearson Correlation Coefficients / Prob>|R| under Ho: Rho=0/N = 20
                                      X1            X2            X3
X1                               1.00000       0.92384       0.45778
Triceps skinfold thickness                      0.0001        0.0424
X2                               0.92384       1.00000       0.08467
Thigh circumference               0.0001                      0.7227
X3                               0.45778       0.08467       1.00000
Midarm circumference              0.0424        0.7227

Correlations of linear combinations among independent variables in Body Fat
Example (Neter, Wasserman & Kuttner, 1989).

Dependent Variable: X1      Triceps skinfold thickness
    Root MSE    0.19946     R  = 0.9986         r = 0.99932

Dependent Variable: X2      Thigh circumference
    Root MSE    0.23295     R  = 0.9982         r = 0.99912

Dependent Variable: X3      Midarm circumference
    Root MSE    0.37699     R  = 0.9904         r = 0.99522

The effect of Multicolinearity on a model is a serious one, and one which will
require additional techniques to address.

The problem adversely effects
 Estimates of regression coefficients
 Variance of the reg coeff
 

We will return to this problem later with several ways of addressing it directly
(this problem is so serious that we may even be willing ot accept a
“biased estimator")

or ways of getting around it through variable selection techniques in building the
model


