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SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA

 MODEL:    Y  =    +  X   +  3 ! " 3 3" " %

 MATRIX MODEL:  Y  =  XB + E

  or     =         

Y 1 X e
Y 1 X b e

Y 1 X e
b

Ô × Ô × Ô ×Ö Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö Ù
Õ Ø Õ Ø Õ Ø” •

" " "

# # ! #

8 8 8

"ã ã ã ã


Where,
 Y is the vector of dependent variables
 XB is the linear model with data values and parameter estimates in separate

matrices.
 the "1"s correct for the intercept
 E is the vector of random deviations or random errors

 THE VALUES NEEDED FOR THE MATRIX SOLUTION ARE:

 Y Y which is equivalent to USSY and equal to Yw
3

  Y Y  =   Y Y ... Y

Y
Y

Y

w
" # 8

"

#

8

c d Ô ×Ö ÙÖ Ù
Õ Øã

 X X which produces various intermediate sumsw

  X X  =   
1 1 ... 1 1 X

X X ... X

1 X

1 X

w

" # 8
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X Y which produces sum of Y and cross productsw

  X Y  =    X X  =      =   
1 1 ... 1 Y Y

X X ... X X Y

Y

Y

w w

" # 8 3 3

"

# 3

8

” • ” •
Ô ×Ö ÙÖ Ù
Õ Øã

D
D

 Using these three intermediate matrices (Y Y, X X and X Y) we can proceedw w w

with the matrix solutions.

 The least squares solution for linear regression is based on the solutions of
normal equations.

 The normal equations for a Simple linear Regression are

    nb    +  X b   =    Y! 3 " 3D D
x   X b   +  X b   =  X Y2 2D D D3 ! " 3 33

 which can be expressed as a matrix equation

          =   
n X
X X

b Y
b X Y” • ” • ” •D

D D
D

D
3

3 3

! 3

" 3 3
2
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from our previous calculations we can recognize this matrix equation as

  (X X) B = X Yw w

 where B is the vector of regression coefficients.  In order to obtain the fitted
model we must solve for B.

  (X X) (X X) B  =  (X X)  (X Y)w " w w " w- -

  I*B  =  (X X)  (X Y)w " w-

  B  =  (X X)  (X Y)w " w-

  where  A   =     
a -a
-a a

- 1
a a  - a a

" ## "#

#" """" ## "# #"
” •

   then (X X)  =      
X - X

- X n
w " 3 3

3

- 1
n X  - ( X )

2

D D2 2
3 3

” •D D
D

  and

   B =  *   =  
Y b

X Y b

Ô ×
Õ Ø ” • ” •

D

D D D D
D

D
D D D D

X
n X ( X ) n X ( X )

X

X
n X ( X ) n X ( X )

n

2

2 22 2

2 22 2

3 3

3 33 3

3

3 33 3
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once we have fitted the line using the matrix equation, we proceed to obtain the
Analysis of Variance table and our tests of hypothesis.

ANOVA TABLE in matrix form
    uncorrected      corrected
 Source          d.f.        USS    d.f.             SS
  Regression   2         B X Y     1         B X Y - CFw w w w

  Error   n-2     Y Y-B X Y   n-2        Y Y-B X Yw w w w w w

  Total    n           Y Y   n-1           Y Y-CFw w

 The correction factor (CF) is the same as has been previously discussed.  It

can be calculated as either          or     nY–
( Y )

n
2D

8

3œ"
3

2

Additional calculations are

  R   =  2 B X Y-CF
Y Y - CF

w w

w

 the F test and t-test are given by  F =    =  MSRegression (B X Y  CF)/dfReg
MSError (Y Y  B X Y)/dfError

w w

w w w




The Variance - covariance matrix can be calculated as

MSE * (X X)  = MSE*  = 
c c MSE*c MSE*c
c c MSE*c MSE*c

w " !! !" !! !"

"! "" "! ""

- ” • ” •

  =       or   
S S S S

S S S S– — – —2 2
b bb b b

b b b
2 2
b b

! !! " !"

" ! "!" "
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REVIEW OF SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA

first obtain Y Y, X X, X Y, and (X X)w w w w "-

then

 B  =  (X X) (X Y)w " w-

 SSReg  =  B X Y  -  CFw w

 SSTotal =  Y Y  -  CFw

 SSE  =  SSTotal - SSReg  =  Y Y - B X Yw w w

 Y   = Y   =  L B–̂ ^
L L

w

 S   = L(X X) L (MSE)2 -

Y–̂x

w " w

 S   = [1 + L(X X) L ](MSE) = L(X X) L (MSE) + MSE2 - -
Ŷx

w " w w " w

Variance-Covariance Matrix  =  (X X) (MSE)w "-
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Prediction of the true mean (population mean) and of new observations.

SLR

 a) Predicting the true population mean at xo

  Model:     Y   =    +  X   +  3 ! " 3 3" " %

  The true population mean at x  is:       +  xo o" "! "

  The predicted value (Y ) is:     b   +  b x    =  Y  +  b (x  - X)^ _ _
o o o! " "

  Variance (error) for Y  is:     +  ^
o

2 1
n S

(x -X)
_

5 ’ “o
2

XX

  Confidence Interval:   (b  + b x )  t   +  ^
! " o , n-2

2 1
n S

(x -X)
_

„ !
#

Ê ’ “5 o
2

XX

 b) Predicting a new observation at xo

  The true observation x  is:     Y   =    +  x  +  o o o o" " %! "

  The predicted value (Y ) is:     b   +  b x^
o o! "

  Variance (error) for Y  is:    1 +  +  ^
o

2 1
n S

(x -X)
_

5 ’ “o
2

XX

  Confidence Interval:   (b  + b x )  t  1 +  +  ^
! " o , n-2

2 1
n S

(x -X)
_

„ !
#

Ê ’ “5 o
2

XX

MLR - matrix algebra generalization

 a) Predicting the true population mean

  Model:     Y   =  X  + 3 " %

  The true population mean at x  is:     Xo "

  The predicted value is:     XB

  Variance (error) is:    X(X X) X52 -w " w

  Confidence Interval:  x  b  t  X(X X) X^
!

w " w„ !
# , n-p

2 -5

 b) Predicting a observation

  The true mean at x  is:     Y   = X  + o o o!" %

  The predicted value is:     x  b!

  Variance (error) is:    [1 + X(X X) X ]52 -w " w

  Confidence Interval:  x  b  t  [1 + X(X X) X ] ^
!

w " w„ !
# , n-p

2 -É5
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More ANOVA table stuff

 We have seen the partitioning of Y  into components3

 SSTotal  SSCF  SSRegression  SSErrorœ  

ANOVA TABLE for SLR

 SOURCE     d.f.      SS

 Mean        1      nY
_

2

 Regression       1   (Y  - Y)^ _
D 3

2

 Error      n-2   (Y  - Y )^D 3 3
2

 Total (uncorrected)    n      YD 2
3

 SS(Mean)   =   SS(b )      SS (b )! !´ R

 SS(Regression)   =   SS(b  | b )      SS (b  | b )" ! " !´ R

 SS(Error)   =   SSE   =   SSResiduals

 SS (b ,b ) = b X Y = combined sum of squares for SSMean and SSRegR ! "
w w

The usual ANOVA TABLE for SLR
 SOURCE  d.f.      SS  

 SS (b |b )    1  (Y  - Y)    MSReg (Y  - Y)  / 1^ ^_ _
R

2 2
" ! 3 3D Dœ

 Error   n-2 (Y  - Y )    MSError (Y  - Y )  / n-2^ ^D D3 3 3 3
2 2œ

 Total Corrected n-1  (Y  - Y)      S  (Y  - Y)  / n-1
_ _

D D3 3
2 2 2

Y3
œ
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Multiple Regression   Y     X   X   3 ! " "3 # #3 3œ   " " " %

 where  E( )  0%3 œ

 then   E(Y )    X   X3 ! " "3 # #3œ  " " "

This model then predicts any point on a PLANE, where the axes of the plane are
X  and X .  The response variable, Y , gives the height above the plane." # 3

If we choose any particular value of X  or X , then we essentially take a slice of" #

the plane.

     Y   b   b X   b X^
3 ! " "3 # #3œ  

 hold X  constant  Y   b   b X   b C^
# 3 ! " "3 # \#œ  

     Y   (b b C )   b X^
3 ! # \# " "3œ  

Lets suppose we take that slice at a point where X =10 for the following model."

We are then holding X  constant at 10, and examining the line (a slice of"

the plane) at that point.

  Y   5  2X   3X^
3 "3 #3œ  

  Y   5  2*10  3X^
3 #3œ  

  Y   25  3X^
3 #3œ 

This is a simple linear function.  At every particular value of either X  or X , the" #

function for the other X  will be simple linear for this model.5

NOTE that the interpretation for the regression coefficients is the same as before,
except that now we have one regression coefficient per independent
variable.

General Linear Regressions
  Y     X   X   X  ...  X   3 ! " "3 # #3 $ $3 : " : "3 3œ      " " " " " %- -

this is no longer a simple plane;  it describes a hyperplane.  However, we could
still hold all X  constant except one, and describe a simple linear5

function.
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Calculations for Multiple Regression

 Y  =  b   +  b X   +  b X   +  ...  +  b X   +  e3 ! " "3 # #3 5 53 3

 where there are k different independent variables

 1) as before, the equation can be solved for e  , and partial derivatives taken3

with respect to each unknown (b , b , b , ).! " # á

 2) the partial derivatives can be set equal to zero, and solved simultaneously
to get k+1 equations with k+1 unknowns.

3) the normal equations derived are;

 nb   +  X b     + X b    ... X b    =  Y! " " # # 5 5 3D D D D
 X b  +  X b     + X X b  ... X X b        =  X YD D D D D" ! " " # # " 5 5 " 3"

2

 X b  +  X X b   + X b   ... X X b   =  X YD D D D D# ! " # " # # 5 5 # 3#
2

                    ã ã ã ã ã ã
 X b  +  X X b  + X X b   ... X b    =  X YD D D D D5 ! " 5 " # 5 # 5 5 35

2

 which can be factored out to an equation of matrices

   *   =  

n X X X
X X X X X X
X X X X X X

X X X X X X

b Y
b X
b

b

Ô × Ô × Ô ×Ö Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö Ù
Õ Ø Õ Ø Õ Ø

D D D

D D D D

D D D D

D D D D

D
D

" # 5

" " # " 5"

# " # # 5#

5 " 5 # 5 5

! 3

" "

#

5

2

2

2

á

á
ã ã ã

á

ã

3 3

#3 3

53 3

Y
X Y

X Y

D

D
ã
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Matrix calculations for General Regression : Numerical Example - NWK7.20

Mathematician salaries.  X = Index of publication quality, X =years of" #

experience,  X =success in getting grant support.$

X= 

1 33.2 3.5 9.0
1 40.3 5.3 20.0
1 38.7 5.1 18.0
1 46.

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

8 5.8 33.0
1 41.4 4.2 31.0
1 37.5 6.0 13.0
1 39.0 6.8 25.0
1 40.7 5.5 30.0
1 30.1 3.1 5.0
1 52.9 7.2 47.0
1 38.2 4.5 25.0
1 31.8 4.9 11.0
1 43.3 8.0 23.0
1 44.1 6.5 35.0
1 42.8 6.6 39.0
1 33.6 3.7 21.0
1 34.2 6.2 7.0
1 48.0 7.0 40.0
1 38.0 4.0 35.0
1 35.9 4.5 23.0
1 40.4 5.9 33.0
1 36.8 5.6 27.0
1 45.2 4.8 34.0
1 35.1 3.9 15.1

   Y= 

ÔÖÖÖÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

×ÙÙÙ
6.1
6.4
7.4
6.7
7.5
5.9
6.0
4.0
5.8
8.3
5.0
6.4
7.4
7.0
5.0
4.4
5.5
7.0
6.0
3.5
4.9
4.3
8.0
5.0
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Raw data matrices (X and Y) and the intermediate calculations (X X, X Y & Y Y).w w w

 X X = 

n X X X

X X X X X X

X X X X X X

X X

w

" # $

" " # " $"

# " # # $#

$

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

D D D

D D D D

D D D D

D D

8 8 8

3 œ " 3 œ " 3 œ "
8 8 8 8

3 œ " 3 œ " 3 œ " 3 œ "
8 8 8 8

3 œ " 3 œ " 3 œ " 3 œ "
8 8

3 œ " 3 œ "

2

2

" $ # $ $X X X XD D
8 8

3 œ " 3 œ "
2

  =  

24 948 128.6 599
948 38135.26 5188.17 24873.7

128.6 5188.17 727.44 3365.3
599 24873.7 3365.3 17847

Ô ×Ö ÙÖ Ù
Õ Ø

  X Y =  = 

Y

X Y

X Y

X Y

143.5
5767.77
782.49
3671.9

w
"

#

$

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù Ö ÙÖ Ù Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

Ô ×
Õ Ø

D

D

D

D

8

3 œ "
8

3 œ "
8

3 œ "
8

3 œ "

  Y Y =  Y     =      899.49w – — ’ “D
8

3 œ "
2
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the normal equations derived are;

 nb     + X b   + X b    + X b   = Y! " " # # 5 5 3D D D D
 X b  + X b   + X X b  + X X b  = X YD D D D D" ! " " # # " 5 5 " 3"

2

 X b  + X X b  + X b   + X X b   = X YD D D D D# ! " # " # # 5 5 # 3#
2

 X b  + X X b  + X X b  + X b   = X YD D D D D$ ! " $ " # $ # $ $ 3$
2

which can be factored out to an equation of matrices

  *   =  

n X X X
X X X X X X
X X X X X X
X X X X X X

b Y
b X Y
b X Y
b X Y

Ô × Ô × Ô ×Ö Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö Ù
Õ Ø Õ Ø Õ Ø

D D D

D D D D

D D D D

D D D D

D
D
D
D

" # $

" " # " $"

# " # # $#

$ " $ # $ $

! 3

" "3 3

# #3 3

$ $3 3

2

2

2
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Analysis starts with the X X inversew

(X X) = =

c c c c
c c c c
c c c c
c c c c

w "

!! !" !# !$

"! "" "# "$

#! #" ## #$

$! $" $# $$

-

Ô ×Ö ÙÖ Ù
Õ Ø

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

5.3478 -0.1958 0.1486 0.0654
-0.1958 0.008422 -0.01215 -0.002874
0.1486 -0.01215 0.05088 0.002356

0.06541 -0.002874 0.002356 0.001422

 B = (X X) (X Y) =    = 

b -4.511385879
b 0.3743477585
b -0.276494134
b -0.112439513

w " w

!

"

#

$

-

Ô × Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø Õ Ø

Analysis of Variance
 USSTotal =  Y Yw

 USSRegression  =  B X Yw w

 SSE  =  Y Y  B X Y  =  UCSSTotal  UCSSRegw w w 

The ANOVA table calculated with matrix formulas is
 Source           d.f.   SS
  Regression       p-1=3   B X Y  CF =21.241w w 
  Error   n p-1=20   Y Y  B X Y = 17.845 w w w

  Total      n 1=23   Y Y  CF = 39.086 w

 where the correction factor is calculated as usual,  CF =   =  nY .
_

( Y)
n

2D 2

The F test of the model is a joint test of the regression coefficients,

  H :  =  =  = ... =  ! " # $ :"" " " " = 0

  F =    =  MSRegression (B X Y  CF)/dfReg
MSError (Y Y  B X Y)/dfError

w w

w w w




 where

  E(MSR)= + 52  (X X ) +  (X X ) 2  (X X )(X X )– – – –

2
" D " D " " D2 2 2 2
" #"3 " #3 # " # "3 " #3 #    

NOTE: E(MSR) departs from  as  increases in magnitude (+ of ) or as any5 "2
5 

X  increases in distance from X .  The F test is a joint test for all –
53 5 5"

jointly equal 0.
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To test any  individually, we can still use   t  =  "5
(b   0)

s
5

5b

 where s   is obtained from the VARIANCE  COVARIANCE matrixb5 
(below).

The confidence interval, for any , is given by"5

 P(b t  s     b  t  s )   1-5 " ß8: 5 5 " ß8: Ÿ Ÿ  œ! !
# #5 5b b" !

and the Bonferroni joint confidence interval for several  parameters is given by"5

 P(b t  s     b  t  s )   1-5 " ß8: 5 5 " ß8: Ÿ Ÿ  œ! !
# #5 5g gb b" !

  where “g" is the number of parameters

The VARIANCE  COVARIANCE matrix is calculated as from the X X w "-

matrix.

 (X X)  = MSE

c c c c
c c c c
c c c c
c c c c

w "

!! !" !# !$

"! "" "# "$

#! #" ## #$

$! $" $# $$

-

Ô ×Ö ÙÖ Ù
Õ Ø

 = =

MSE*c MSE*c MSE*c MSE*c
MSE*c MSE*c MSE*c MSE*c
MSE*c MSE*c MSE*c MSE*c
MSE*c MSE*c MSE*c MSE*c

Ô ×Ö ÙÖ Ù
Õ Ø

ÔÖÖÖ
Õ

!! !" !# !$

"! "" "# "$

#! #" ## #$

$! $" $# $$

×ÙÙÙ
Ø

s s s s

s s s s

s s s s

s s s s

2

2

2

2

, , , ,

, , ,,

, , ,,

, , , ,

!! !" !# !$

"! "# "$""

#! #" #$##

$! $" $# $$

 =    = Var-Cov matrix

Var(b ) Cov(b b ) Cov(b b )
Cov(b b ) Var(b ) Cov(b b )

Cov(b b ) Cov(b b ) Var(b )

Ô ×Ö ÙÖ Ù
Õ Ø

" " # "

# " # #

" #

á
á

ã
á

n

n

n n n

where the c  values are called Gaussian multipliers.  The34

VARIANCE COVARIANCE matrix is then calculated from this matrix
by multiplying by the MSError.

These are unbiased estimates of 52
,

The individual values then provide the variances and covariances such that
 MSE*c   =  Variance of b   =  VAR(b )!! ! !

 MSE*c   =  Variance of b   =  VAR(b ),   so  s   =  MSE*c"" " " ""b"
È

 MSE*c   =  MSE*c   =  Covariance of b  and b   =  COV(b ,b )!" "! ! " ! "
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Prediction of mean response

 For simple linear regression we got Y and its CI for some X^
2

 For multiple regression, we need an X  for each X2 4

 Given a vector of X  = –

1
X
X

X

2

2"

2#

2ß: "

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Øã

-

 E(Y ) = X–2 2"

 Y  = X B^
–2 2

 The variance estimates for mean responses are given by
  MSE*X(X X) Xw " w-

 for individual observations, add one MSE  MSE+MSE*X(X X) Xw " w-

   P(Y t  s   E(Y )  Y  t  s )  1-^ ^ ^
2 " ß8 2 2 " ß8 Ÿ Ÿ  œ! !

# #2 2
p pY Y^ ^ !

 simultaneous estimates of several mean responses can employ either the

  Working-Hotelling approach

   Y Ws    where W  = pF^
2 , " à:ß8:„

Ŷ2

2
!

  or the Bonferroni approach

   Y Bs     where B = t^
2 , " à8:„

Ŷ g2 #
!
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for individual observations the prediction is the same Y  = X B^
–2
w
2

 and the variance is one MSE larger than for the mean

  MSE + MSE*X(X X) Xw " w-

 and for the mean of a new sample of size m, the variance is

   + MSE*X(X X) XMSE
m

-w " w

 As with the SLR, confidence intervals of g new observations can be done
with

  Scheffe limits´

  Y Ss    where S  = gF^
2 , " à ß8:„

Ŷ2

2
g!

 or the Bonferroni approach

  Y Bs     where B =  t^
2 , " à8:„

Ŷ g2 #
!
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Coefficient of Multiple Determination  -  the proportion of the SSTotal (usually
corrected) accounted for by the Regression line (SSReg).

Models  an interceptwith

 R  =  =  =  =   =  1-2 SS (b ,b , , b |b ) SSRegression
S SSTotal (corrected) Y Y CF S S

B X Y CF SS  - SS SSR k

YY YY YY

YY E E" # !
w w

w
á 



  =   =  0.543421.24
39.09

Recalling the expressions for S  we haveR

 R    =      =       =  1 - 2 b X Y - nY
_

Y Y - nY
_ (Y  - Y)^ _

 (Y  - Y)
_ SS

SSTotal (UNCorrected)

w w

w

3

3

2

2 2

2
ED

D

Some Properties of R  : Same as for SLR2

 1)  0  R   1Ÿ Ÿ2

 2)  R   =  1.0iff  Y   =  Y   for all i    (perfect prediction, SSE = 0)^2
3 3

 3) R   =  r for simple linear regression2 2
XY

 4) R   =  r  for all models with intercepts2 2
YY^

 5) R     1.0when there are different repeated values of Y   at some  value2 Á 3

of X  (no matter how well the model fits)3

 6) R       R2 2
SubModel FullModelŸ

 New independent variables added to a model will increase R .  The R  for2 2

the full model could be EQUAL, but never less than the R  for the2

submodel

F test for Lack of Fit

 E(Y) =   X   X   X  + ...  X" " " " "! " "3 # #3 $ $3 : " : "ß3    - -

 To get true repeats in multiple regression, EVERY independent variable
must remain the same from one observation to another

 This can be calculated with either full and reduced model
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New problems associated with MULTIPLE REGRESSION

The SLR fitted only a single slope, so we needed only one SSReg to describe it.
With various slopes, we will need some other sums of squares to describe
the various fitted slopes.

 we will actually see 2 types of SS

non-problems associated with Multiple regression

 a) All previous definitions and notation apply.

 b) The assumptions are basically the same (more X , each measured without3

error).

 Many of the tests of hypothesis will be discussed in terms of the General
Linear Test, with appropriate Full and Reduced models.

 This test does not really change with multiple regression,  We still have the
same table,

 Model     d.f    SS   MS   F
  Reduced (Error)   n-p   SSERed

  Full (Error)  n-p-q   SSEFull

  Difference      q   SS   MS   Diff Diff
MS
MSE

Diff

Full

  Full (Error)  n-p-q   SSE   MSE  Full Full

 Model     d.f    SS   MS   F
  Full (SSReg)  p+q   SSRRed

  Reduced (SSReg)    p   SSRFull

  Difference      q   SS   MS   Diff Diff
MS
MSE

Diff

Full

  Full (Error)  n-p-q   SSE   MSE  Full Full


