SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA

MODEL: $\quad \mathrm{Y}_{i}=\beta_{0}+\beta_{1} \mathrm{X}_{i}+\epsilon_{i}$
MATRIX MODEL: $\mathrm{Y}=\mathrm{XB}+\mathrm{E}$

$$
\text { or }\left[\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\vdots \\
\mathrm{Y}_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathrm{X}_{1} \\
1 & \mathrm{X}_{2} \\
\vdots & \vdots \\
1 & \mathrm{X}_{n}
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{b}_{0} \\
\mathrm{~b}_{1}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}_{1} \\
\mathrm{e}_{2} \\
\vdots \\
\mathrm{e}_{n}
\end{array}\right]
$$

Where,
Y is the vector of dependent variables
XB is the linear model with data values and parameter estimates in separate matrices.
the " 1 "s correct for the intercept
E is the vector of random deviations or random errors
THE VALUES NEEDED FOR THE MATRIX SOLUTION ARE:
$\mathrm{Y}^{\prime} \mathrm{Y}$ which is equivalent to USSY and equal to Y_{i}

$$
\mathrm{Y}^{\prime} \mathrm{Y}=\left[\begin{array}{llll}
\mathrm{Y}_{1} & \mathrm{Y}_{2} & \ldots & \mathrm{Y}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\vdots \\
\mathrm{Y}_{n}
\end{array}\right]
$$

$\mathrm{X}^{\prime} \mathrm{X}$ which produces various intermediate sums

$$
\begin{aligned}
\mathrm{X}^{\prime} \mathrm{X} & =\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\mathrm{X}_{1} & \mathrm{X}_{2} & \ldots & \mathrm{X}_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & \mathrm{X}_{1} \\
1 & \mathrm{X}_{2} \\
\vdots & \vdots \\
1 & \mathrm{X}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{n} & \Sigma \mathrm{X}_{i} \\
\Sigma \mathrm{X}_{i} & \Sigma \mathrm{X}_{i}^{2}
\end{array}\right]
\end{aligned}
$$

$\mathrm{X}^{\prime} \mathrm{Y}$ which produces sum of Y and cross products

$$
\mathrm{X}^{\prime} \mathrm{Y}=\mathrm{X}^{\prime} \mathrm{X}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\mathrm{X}_{1} & \mathrm{X}_{2} & \ldots & \mathrm{X}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\vdots \\
\mathrm{Y}_{n}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{i} \mathrm{Y}_{i}
\end{array}\right]
$$

Using these three intermediate matrices ($\mathrm{Y}^{\prime} \mathrm{Y}, \mathrm{X}^{\prime} \mathrm{X}$ and $\mathrm{X}^{\prime} \mathrm{Y}$) we can proceed with the matrix solutions.

The least squares solution for linear regression is based on the solutions of normal equations.

The normal equations for a Simple linear Regression are

$$
\begin{gathered}
\mathrm{nb}_{0}+\Sigma \mathrm{X}_{i} \mathrm{~b}_{1}=\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{i} \mathrm{~b}_{0}+\Sigma \mathrm{X}_{i}^{2} \mathrm{~b}_{1}=\Sigma \mathrm{X}_{i} \mathrm{Y}_{i}
\end{gathered}
$$

which can be expressed as a matrix equation

$$
\left[\begin{array}{cc}
\mathrm{n} & \Sigma \mathrm{X}_{i} \\
\Sigma \mathrm{X}_{i} & \Sigma \mathrm{X}_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{b}_{0} \\
\mathrm{~b}_{1}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{i} \mathrm{Y}_{i}
\end{array}\right]
$$

from our previous calculations we can recognize this matrix equation as

$$
\left(\mathrm{X}^{\prime} \mathrm{X}\right) \mathrm{B}=\mathrm{X}^{\prime} \mathrm{Y}
$$

where B is the vector of regression coefficients. In order to obtain the fitted model we must solve for B.

$$
\left.\left.\begin{array}{l}
\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right) \\
I^{*} B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right) \\
B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right) \\
\text { where } A^{-1}=\frac{1}{a_{11} a_{22}-a_{122} 2_{21}}
\end{array} \begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]\right)
$$

and

$$
\mathrm{B}=\left[\begin{array}{cc}
\frac{\Sigma \mathrm{X}_{i}^{2}}{\mathrm{n} \Sigma \mathrm{X}_{i}^{2}-\left(\Sigma \mathrm{X}_{i}\right)^{2}} & \frac{-\Sigma \mathrm{X}_{i}}{\mathrm{n} \Sigma \mathrm{X}_{i}^{2}-\left(\Sigma \mathrm{X}_{i}\right)^{2}} \\
\frac{-\Sigma \mathrm{X}_{i}}{\mathrm{n} \Sigma \mathrm{X}_{i}^{2}-\left(\Sigma \mathrm{X}_{i}\right)^{2}} & \frac{\mathrm{n}}{\mathrm{n} \Sigma \mathrm{X}_{i}^{2}-\left(\Sigma \mathrm{X}_{i}\right)^{2}}
\end{array}\right] *\left[\begin{array}{c}
\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{i} \mathrm{Y}_{i}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{b}_{0} \\
\mathrm{~b}_{1}
\end{array}\right]
$$

once we have fitted the line using the matrix equation, we proceed to obtain the Analysis of Variance table and our tests of hypothesis.

ANOVA TABLE in matrix form

	uncorrected			corrected	
Source	d.f.	USS	d.f.	SS	
Regression	2	$B^{\prime} X^{\prime} Y$		$B^{\prime} X^{\prime} Y-C F$	
Error	$\mathrm{n}-2$	$\mathrm{Y}^{\prime} Y-\mathrm{B}^{\prime} X^{\prime} Y$	$\mathrm{n}-2$	$\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{B}^{\prime} X^{\prime} Y$	
Total	n	$\mathrm{Y}^{\prime} \mathrm{Y}$		$\mathrm{n}-1$	$\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{CF}$

The correction factor (CF) is the same as has been previously discussed. It can be calculated as either $\frac{\left.\sum_{i=1}^{n} Y_{i}\right)^{2}}{\mathrm{n}}$ or $\mathrm{n} \overline{\mathrm{Y}}^{2}$

Additional calculations are

$$
\mathrm{R}^{2}=\frac{\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}-\mathrm{CF}}{\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{CF}}
$$

the F test and t -test are given by

$$
\mathrm{F}=\frac{\text { MSRegression }}{\text { MSError }}=\frac{\left(\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}-\mathrm{CF}\right) / \mathrm{d} \text { fReg }}{\left(\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}\right) / \text { dEtror }}
$$

The Variance - covariance matrix can be calculated as

$$
\begin{aligned}
& \operatorname{MSE} *\left(X^{\prime} X\right)^{-1}=\text { MSE }^{*}\left[\begin{array}{cc}
c_{00} & c_{01} \\
c_{10} & c_{11}
\end{array}\right]=\left[\begin{array}{ll}
\text { MSE }^{*} c_{00} & \mathrm{MSE}^{*} \mathrm{c}_{01} \\
\mathrm{MSE}^{*} \mathrm{c}_{10} & \mathrm{MSE}^{*} \mathrm{c}_{11}
\end{array}\right] \\
&=\left[\begin{array}{cc}
\mathrm{S}_{\mathrm{b}_{0}}^{2} & \mathrm{~S}_{\mathrm{b}_{0} \mathrm{~b}_{1}} \\
\mathrm{~S}_{\mathrm{b}_{1} \mathrm{~b}_{0}} & \mathrm{~S}_{\mathrm{b}_{1}}^{2}
\end{array}\right] \text { or }\left[\begin{array}{cc}
\mathrm{S}_{\mathrm{b}_{0}}^{2} & \mathrm{~S}_{\mathrm{b}_{01}} \\
\mathrm{~S}_{\mathrm{b}_{10}} & \mathrm{~S}_{\mathrm{b}_{1}}^{2}
\end{array}\right]
\end{aligned}
$$

REVIEW OF SIMPLE LINEAR REGRESSION WITH MATRIX ALGEBRA

first obtain $\mathrm{Y}^{\prime} \mathrm{Y}, \mathrm{X}^{\prime} \mathrm{X}, \mathrm{X}^{\prime} \mathrm{Y}$, and $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$
then

$$
\begin{aligned}
& B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right) \\
& \text { SSReg }=B^{\prime} X^{\prime} Y-C F \\
& \text { SSTotal }=Y^{\prime} Y-C F \\
& \text { SSE }=\text { SSTotal }- \text { SSReg }=Y^{\prime} Y-B^{\prime} X^{\prime} Y \\
& \hat{Y}_{L}=\hat{Y}_{L}=L^{\prime} B \\
& S_{\hat{Y}_{X}}^{2}=L\left(X^{\prime} X\right)^{-1} L^{\prime}(M S E) \\
& S_{\hat{Y}_{X}}^{2}=\left[1+L\left(X^{\prime} X\right)^{-1} L^{\prime}\right](M S E)=L\left(X^{\prime} X\right)^{-1} L^{\prime}(M S E)+M S E
\end{aligned}
$$

Variance-Covariance Matrix $=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}(\mathrm{MSE})$

Prediction of the true mean (population mean) and of new observations.

SLR
a) Predicting the true population mean at x_{o}

Model: $\quad \mathrm{Y}_{i}=\beta_{0}+\beta_{1} \mathrm{X}_{i}+\epsilon_{i}$
The true population mean at x_{0} is: $\beta_{0}+\beta_{1} \mathrm{x}_{0}$
The predicted value $\left(\hat{\mathrm{Y}}_{\mathrm{o}}\right)$ is: $\quad \mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{\mathrm{o}}=\overline{\mathrm{Y}}+\mathrm{b}_{1}\left(\mathrm{x}_{\mathrm{o}}-\overline{\mathrm{X}}\right)$
Variance (error) for \hat{Y}_{o} is: $\quad \sigma^{2}\left[\frac{1}{n}+\frac{\left(X_{0}-\bar{X}\right)^{2}}{S_{X X}}\right]$
Confidence Interval: $\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{\mathrm{o}}\right) \pm \mathrm{t}_{\frac{\alpha}{2}}, \mathrm{n}-2 \sqrt{\hat{\sigma}^{2}\left[\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{x}_{0}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{~S}_{\mathrm{xX}}}\right]}$
b) Predicting a new observation at x_{0}

The true observation x_{o} is: $\mathrm{Y}_{\mathrm{o}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{o}}+\epsilon_{\mathrm{o}}$
The predicted value $\left(\hat{\mathrm{Y}}_{\mathrm{o}}\right)$ is: $\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}_{\mathrm{o}}$
Variance (error) for $\hat{\mathrm{Y}}_{\mathrm{O}}$ is: $\quad \sigma^{2}\left[1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{0} \overline{\mathrm{X}}\right)^{2}}{S_{\mathrm{XX}}}\right]$
Confidence Interval: $\left(b_{0}+b_{1} x_{0}\right) \pm t_{\frac{\alpha}{2}}, n-2 \sqrt{\hat{\sigma}^{2}\left[1+\frac{1}{n}+\frac{\left(\mathrm{x}_{0}-\overline{\mathrm{X}}\right)^{2}}{S_{\mathrm{xx}}}\right]}$
MLR - matrix algebra generalization
a) Predicting the true population mean

Model: $\quad \mathrm{Y}_{i}=\mathrm{X} \beta+\epsilon$
The true population mean at x_{0} is: $\mathrm{X} \beta$
The predicted value is: XB
Variance (error) is: $\quad \sigma^{2} \mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}$
Confidence Interval: $\mathrm{x}_{0} \mathrm{~b} \pm \mathrm{t}_{\frac{\mathrm{e}}{2}}, \mathrm{n} \mathrm{p}, \hat{\sigma}^{2} \mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}$
b) Predicting a observation

The true mean at x_{o} is: $\mathrm{Y}_{\mathrm{o}}=\mathrm{X}_{0} \beta+\epsilon_{\mathrm{o}}$
The predicted value is: $x_{0} b$
Variance (error) is: $\quad \sigma^{2}\left[1+\mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}\right]$
Confidence Interval: $\mathrm{x}_{0} \mathrm{~b} \pm \mathrm{t}_{\frac{\alpha}{2}, \mathrm{n}-\mathrm{p}} \sqrt{\hat{\sigma}^{2}\left[1+\mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}\right]}$

More ANOVA table stuff
We have seen the partitioning of Y_{i} into components
SSTotal $=$ SSCF + SSRegression + SSError

ANOVA TABLE for SLR

SOURCE d.f
Mean
Regression
Error
Total (uncorrected)
d.f. SS

1
1
n-2 $\quad \Sigma\left(\mathrm{Y}_{i}-\hat{\mathrm{Y}}_{i}\right)^{2}$
n
$n \bar{Y}^{2}$
$\Sigma\left(\hat{\mathrm{Y}}_{i}-\overline{\mathrm{Y}}\right)^{2}$
$\Sigma \mathrm{Y}_{i}^{2}$
$\mathrm{SS}($ Mean $)=\mathrm{SS}\left(\mathrm{b}_{0}\right) \equiv \mathrm{SS}_{\mathrm{R}}\left(\mathrm{b}_{0}\right)$
$\mathrm{SS}($ Regression $)=\operatorname{SS}\left(\mathrm{b}_{1} \mid \mathrm{b}_{0}\right) \equiv \mathrm{SS}_{\mathrm{R}}\left(\mathrm{b}_{1} \mid \mathrm{b}_{0}\right)$
SS (Error) $=\mathrm{SSE}=$ SSResiduals
$\mathrm{SS}_{\mathrm{R}}\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right)=\mathrm{b}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}=$ combined sum of squares for SSMean and SSReg

The usual ANOVA TABLE for SLR
SOURCE d.f. SS
$\mathrm{SS}_{\mathrm{R}}\left(\mathrm{b}_{1} \mid \mathrm{b}_{0}\right)$
$1 \quad \Sigma\left(\hat{\mathrm{Y}}_{i}-\overline{\mathrm{Y}}\right)^{2}$
MSReg $=\Sigma\left(\hat{\mathrm{Y}}_{i}-\overline{\mathrm{Y}}\right)^{2} / 1$

Error
$\mathrm{n}-2 \quad \Sigma\left(\mathrm{Y}_{i}-\hat{\mathrm{Y}}_{i}\right)^{2} \quad$ MSError $=\Sigma\left(\mathrm{Y}_{i}-\hat{\mathrm{Y}}_{i}\right)^{2} / \mathrm{n}-2$
Total Corrected
$\mathrm{n}-1 \quad \Sigma\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)^{2}$
$\mathrm{S}_{\mathrm{Y}_{i}}^{2}=\Sigma\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)^{2} / \mathrm{n}-1$

Multiple Regression $\quad \mathrm{Y}_{i}=\beta_{0}+\beta_{1} \mathrm{X}_{1 i}+\beta_{2} \mathrm{X}_{2 i}+\epsilon_{i}$
where $\quad \mathrm{E}\left(\epsilon_{i}\right)=0$
then $\quad \mathrm{E}\left(\mathrm{Y}_{i}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{1 i}+\beta_{2} \mathrm{X}_{2 i}$
This model then predicts any point on a PLANE, where the axes of the plane are X_{1} and X_{2}. The response variable, Y_{i}, gives the height above the plane.

If we choose any particular value of X_{1} or X_{2}, then we essentially take a slice of the plane.

$$
\hat{\mathrm{Y}}_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 i}+\mathrm{b}_{2} \mathrm{X}_{2 i}
$$

hold X_{2} constant $\quad \hat{\mathrm{Y}}_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 i}+\mathrm{b}_{2} \mathrm{C}_{X 2}$

$$
\hat{\mathrm{Y}}_{i}=\left(\mathrm{b}_{0}+\mathrm{b}_{2} \mathrm{C}_{X 2}\right)+\mathrm{b}_{1} \mathrm{X}_{1 i}
$$

Lets suppose we take that slice at a point where $\mathrm{X}_{1}=10$ for the following model. We are then holding X_{1} constant at 10 , and examining the line (a slice of the plane) at that point.

$$
\begin{aligned}
& \hat{\mathrm{Y}}_{i}=5+2 \mathrm{X}_{1 i}+3 \mathrm{X}_{2 i} \\
& \hat{\mathrm{Y}}_{i}=5+2^{*} 10+3 \mathrm{X}_{2 i} \\
& \hat{\mathrm{Y}}_{i}=25+3 \mathrm{X}_{2 i}
\end{aligned}
$$

This is a simple linear function. At every particular value of either X_{1} or X_{2}, the function for the other X_{k} will be simple linear for this model.

NOTE that the interpretation for the regression coefficients is the same as before, except that now we have one regression coefficient per independent variable.

General Linear Regressions

$$
\mathbf{Y}_{i}=\beta_{0}+\beta_{1} \mathbf{X}_{1 i}+\beta_{2} \mathbf{X}_{2 i}+\beta_{3} \mathbf{X}_{3 i}+\ldots+\beta_{p-1} \mathbf{X}_{p-1 i}+\epsilon_{i}
$$

this is no longer a simple plane; it describes a hyperplane. However, we could still hold all X_{k} constant except one, and describe a simple linear function.

Calculations for Multiple Regression

$$
\mathrm{Y}_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1 i}+\mathrm{b}_{2} \mathrm{X}_{2 i}+\ldots+\mathrm{b}_{k} \mathrm{X}_{k i}+\mathrm{e}_{i}
$$

where there are k different independent variables

1) as before, the equation can be solved for e_{i}, and partial derivatives taken with respect to each unknown $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$.
2) the partial derivatives can be set equal to zero, and solved simultaneously to get $\mathrm{k}+1$ equations with $\mathrm{k}+1$ unknowns.
3) the normal equations derived are;

$$
\begin{array}{cccccc}
\mathrm{nb}_{0}+ & \Sigma \mathrm{X}_{1} \mathrm{~b}_{1} & +\Sigma \mathrm{X}_{2} \mathrm{~b}_{2} & \ldots \Sigma \mathrm{X}_{k} \mathrm{~b}_{k} & = & \Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{1} \mathrm{~b}_{0}+ & \Sigma \mathrm{X}_{1}^{2} \mathrm{~b}_{1} & +\Sigma \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~b}_{2} \ldots \Sigma \mathrm{X}_{1} \mathrm{X}_{k} \mathrm{~b}_{k} & = & \Sigma \mathrm{X}_{1} \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{2} \mathrm{~b}_{0}+ & \Sigma \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~b}_{1} & +\Sigma \mathrm{X}_{2}^{2} \mathrm{~b}_{2} & \ldots \Sigma \Sigma \mathrm{X}_{2} \mathrm{X}_{k} \mathrm{~b}_{k} & = & \Sigma \mathrm{X}_{2} \mathrm{Y}_{i} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
\Sigma \mathrm{X}_{k} \mathrm{~b}_{0}+ & \Sigma \mathrm{X}_{1} \mathrm{X}_{k} \mathrm{~b}_{1}+\Sigma \mathrm{X}_{2} \mathrm{X}_{k} \mathrm{~b}_{2} & \ldots \Sigma \mathrm{X}_{k}^{2} \mathrm{~b}_{k} & & \vdots \\
& & \mathrm{X}_{k} \mathrm{Y}_{i}
\end{array}
$$

which can be factored out to an equation of matrices

$$
\left[\begin{array}{ccccc}
\mathrm{n} & \Sigma \mathrm{X}_{1} & \Sigma \mathrm{X}_{2} & & \Sigma \mathrm{X}_{k} \\
\Sigma \mathrm{X}_{1} & \Sigma \mathrm{X}_{1}^{2} & \Sigma \mathrm{X}_{1} \mathrm{X}_{2} & \ldots & \Sigma \mathrm{X}_{1} \mathrm{X}_{k} \\
\Sigma \mathrm{X}_{2} & \Sigma \mathrm{X}_{1} \mathrm{X}_{2} & \Sigma \mathrm{X}_{2}^{2} & \ldots & \Sigma \mathrm{X}_{2} \mathrm{X}_{k} \\
\vdots & & \vdots & & \vdots \\
\Sigma \mathrm{X}_{k} & \Sigma \mathrm{X}_{1} \mathrm{X}_{k} & \Sigma \mathrm{X}_{2} \mathrm{X}_{k} & \ldots & \Sigma \mathrm{X}_{k}^{2}
\end{array}\right] *\left[\begin{array}{c}
\mathrm{b}_{0} \\
\mathrm{~b}_{1} \\
\mathrm{~b}_{2} \\
\vdots \\
\mathrm{~b}_{k}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{1 i} \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{2 i} \mathrm{Y}_{i} \\
\vdots \\
\Sigma \mathrm{X}_{k i} \mathrm{Y}_{i}
\end{array}\right]
$$

Matrix calculations for General Regression : Numerical Example - NWK7.20

Mathematician salaries. $\mathrm{X}_{1}=$ Index of publication quality, $\mathrm{X}_{2}=$ years of experience, $X_{3}=$ success in getting grant support.

$$
\mathrm{X}=\left[\begin{array}{cccc}
1 & 33.2 & 3.5 & 9.0 \\
1 & 40.3 & 5.3 & 20.0 \\
1 & 38.7 & 5.1 & 18.0 \\
1 & 46.8 & 5.8 & 33.0 \\
1 & 41.4 & 4.2 & 31.0 \\
1 & 37.5 & 6.0 & 13.0 \\
1 & 39.0 & 6.8 & 25.0 \\
1 & 40.7 & 5.5 & 30.0 \\
1 & 30.1 & 3.1 & 5.0 \\
1 & 52.9 & 7.2 & 47.0 \\
1 & 38.2 & 4.5 & 25.0 \\
1 & 31.8 & 4.9 & 11.0 \\
1 & 43.3 & 8.0 & 23.0 \\
1 & 44.1 & 6.5 & 35.0 \\
1 & 42.8 & 6.6 & 39.0 \\
1 & 33.6 & 3.7 & 21.0 \\
1 & 34.2 & 6.2 & 7.0 \\
1 & 48.0 & 7.0 & 40.0 \\
1 & 38.0 & 4.0 & 35.0 \\
1 & 35.9 & 4.5 & 23.0 \\
1 & 40.4 & 5.9 & 33.0 \\
1 & 36.8 & 5.6 & 27.0 \\
1 & 45.2 & 4.8 & 34.0 \\
1 & 35.1 & 3.9 & 15.1
\end{array}\right] \quad Y=\left[\begin{array}{c}
6.1 \\
6.4 \\
7.4 \\
6.7 \\
7.5 \\
5.9 \\
6.0 \\
4.0 \\
5.8 \\
8.3 \\
5.0 \\
6.4 \\
7.4 \\
7.0 \\
5.0 \\
4.4 \\
5.5 \\
7.0 \\
6.0 \\
3.5 \\
4.9 \\
4.3 \\
8.0 \\
5.0
\end{array}\right]
$$

Raw data matrices (X and Y) and the intermediate calculations ($\mathrm{X}^{\prime} \mathrm{X}, \mathrm{X}^{\prime} \mathrm{Y}$ \& $\mathrm{Y}^{\prime} \mathrm{Y}$).

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
24 & 948 & 128.6 & 599 \\
948 & 38135.26 & 5188.17 & 24873.7 \\
128.6 & 5188.17 & 727.44 & 3365.3 \\
599 & 24873.7 & 3365.3 & 17847
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Y}^{\prime} \mathrm{Y}=\left[i \stackrel{\sum}{\sum}{ }_{1}^{n} \mathrm{Y}^{2}\right]=[899.49]
\end{aligned}
$$

the normal equations derived are;

$$
\begin{aligned}
& \mathrm{nb}_{0}+\Sigma \mathrm{X}_{1} \mathrm{~b}_{1}+\Sigma \mathrm{X}_{2} \mathrm{~b}_{2}+\Sigma \mathrm{X}_{k} \mathrm{~b}_{k}=\Sigma \mathrm{Y}_{i} \\
& \Sigma \mathrm{X}_{1} \mathrm{~b}_{0}+\Sigma \mathrm{X}_{1}^{2} \mathrm{~b}_{1}+\Sigma \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~b}_{2}+\Sigma \mathrm{X}_{1} \mathrm{X}_{k} \mathrm{~b}_{k}=\Sigma \mathrm{X}_{1} \mathrm{Y}_{i} \\
& \Sigma \mathrm{X}_{2} \mathrm{~b}_{0}+\Sigma \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{~b}_{1}+\Sigma \mathrm{X}_{2}^{2} \mathrm{~b}_{2}+\Sigma \mathrm{X}_{2} \mathrm{X}_{k} \mathrm{~b}_{k}=\Sigma \mathrm{X}_{2} \mathrm{Y}_{i}=\Sigma \mathrm{X}_{3} \mathrm{Y}_{i} \\
& \Sigma \mathrm{X}_{3} \mathrm{~b}_{0}+\Sigma \mathrm{X}_{1} \mathrm{X}_{3} \mathrm{~b}_{1}+\Sigma \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{~b}_{2}+\Sigma \mathrm{X}_{3}^{2} \mathrm{~b}_{3}=0
\end{aligned}
$$

which can be factored out to an equation of matrices

$$
\left[\begin{array}{cccc}
\mathrm{n} & \Sigma \mathrm{X}_{1} & \Sigma \mathrm{X}_{2} & \Sigma \mathrm{X}_{3} \\
\Sigma \mathrm{X}_{1} & \Sigma \mathrm{X}_{1}^{2} & \Sigma \mathrm{X}_{1} \mathrm{X}_{2} & \Sigma \mathrm{X}_{1} \mathrm{X}_{3} \\
\Sigma \mathrm{X}_{2} & \Sigma \mathrm{X}_{1} \mathrm{X}_{2} & \Sigma \mathrm{X}_{2}^{2} & \Sigma \mathrm{X}_{2} \mathrm{X}_{3} \\
\Sigma \mathrm{X}_{3} & \Sigma \mathrm{X}_{1} \mathrm{X}_{3} & \Sigma \mathrm{X}_{2} \mathrm{X}_{3} & \Sigma \mathrm{X}_{3}^{2}
\end{array}\right] *\left[\begin{array}{l}
\mathrm{b}_{0} \\
\mathrm{~b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right]=\left[\begin{array}{c}
\Sigma \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{1 i} \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{2 i} \mathrm{Y}_{i} \\
\Sigma \mathrm{X}_{3 i} \mathrm{Y}_{i}
\end{array}\right]
$$

Analysis starts with the $X^{\prime} X$ inverse

$$
\begin{aligned}
&\left(X^{\prime} X\right)^{-1}==\left[\begin{array}{llll}
c_{00} & c_{01} & c_{02} & c_{03} \\
c_{10} & c_{11} & c_{12} & c_{13} \\
c_{20} & c_{21} & c_{22} & c_{23} \\
c_{30} & c_{31} & c_{32} & c_{33}
\end{array}\right]=\left[\begin{array}{cccc}
5.3478 & -0.1958 & 0.1486 & 0.0654 \\
-0.1958 & 0.008422 & -0.01215 & -0.002874 \\
0.1486 & -0.01215 & 0.05088 & 0.002356 \\
0.06541 & -0.002874 & 0.002356 & 0.001422
\end{array}\right] \\
& B=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right)=\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
-4.511385879 \\
0.3743477585 \\
-0.276494134 \\
-0.112439513
\end{array}\right]
\end{aligned}
$$

Analysis of Variance
USSTotal = $\mathrm{Y}^{\prime} \mathrm{Y}$
USSRegression $=B^{\prime} X^{\prime} Y$
SSE $=\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}=$ UCSSTotal - UCSSReg
The ANOVA table calculated with matrix formulas is
Source
Regression
Error
Total $n-1=23$
where the correction factor is calculated as usual, $\mathrm{CF}=\frac{(\Sigma \mathrm{Y})^{2}}{\mathrm{n}}=\mathrm{n} \overline{\mathrm{Y}}^{2}$.
The F test of the model is a joint test of the regression coefficients,

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\ldots=\beta_{p-1}=\mathbf{0} \\
& \mathrm{F}=\frac{\text { MSRegression }}{\text { MSError }}=\frac{\left(\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}-\mathrm{CF}\right) / \mathrm{dfReg}}{\left(\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}\right) / \mathrm{dEError}}
\end{aligned}
$$

where

$$
\mathrm{E}(\mathrm{MSR})=\sigma^{2}+\frac{\beta_{1}^{2} \Sigma\left(\mathrm{X}_{1 i}-\overline{\mathrm{X}}_{1}\right)^{2}+\beta_{2}^{2} \Sigma\left(\mathrm{X}_{2 i}-\overline{\mathrm{X}}_{2}\right)^{2}+2 \beta_{1} \beta_{2} \Sigma\left(\mathrm{X}_{1 i}-\overline{\mathrm{X}}_{1}\right)\left(\mathrm{X}_{2 i}-\overline{\mathrm{X}}_{2}\right)}{2}
$$

NOTE: $\mathrm{E}\left(\mathrm{MSR}\right.$) departs from σ^{2} as β_{k} increases in magnitude (+ of -) or as any $\mathrm{X}_{k i}$ increases in distance from \bar{X}_{k}. The F test is a joint test for all β_{k} jointly equal 0 .

To test any β_{k} individually, we can still use $\quad \mathrm{t}=\frac{\left(\mathrm{b}_{k}-0\right)}{\mathrm{s}_{\mathrm{b}_{k}}}$
where $\mathrm{s}_{\mathrm{b}_{k}}$ is obtained from the VARIANCE - COVARIANCE matrix (below).

The confidence interval, for any β_{k}, is given by

$$
\mathbf{P}\left(\mathbf{b}_{k}-\mathfrak{t}_{1-\frac{\alpha}{2}, n-p} \mathrm{~s}_{\mathrm{b}_{k}} \leq \beta_{k} \leq \mathrm{b}_{k}+\mathfrak{t}_{1-\frac{\alpha}{2}, n-p} \mathrm{~s}_{\mathrm{b}_{k}}\right)=1-\alpha
$$

and the Bonferroni joint confidence interval for several β_{k} parameters is given by

$$
\mathrm{P}\left(\mathrm{~b}_{k}-\mathrm{t}_{1-\frac{\alpha}{2 g}, n-p} \mathrm{~s}_{\mathrm{b}_{k}} \leq \beta_{k} \leq \mathbf{b}_{k}+\mathrm{t}_{1-\frac{\alpha}{2 g}, n-p} \mathrm{~s}_{\mathrm{b}_{k}}\right)=1-\alpha
$$

where " g " is the number of parameters
The VARIANCE - COVARIANCE matrix is calculated as from the $\mathrm{X}^{\prime} \mathrm{X}^{-1}$
matrix.

$$
\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}=\mathrm{MSE}\left[\begin{array}{llll}
\mathrm{c}_{00} & c_{01} & c_{02} & c_{03} \\
\mathrm{c}_{10} & c_{11} & c_{12} & c_{13} \\
\mathrm{c}_{20} & c_{21} & c_{22} & c_{23} \\
\mathrm{c}_{30} & \mathrm{c}_{31} & c_{32} & c_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
\text { MSE }^{*} c_{00} & \text { MSE }^{*} c_{01} & \text { MSE }^{*} c_{02} & \text { MSE }^{*} c_{03} \\
\text { MSE }^{*} c_{10} & \text { MSE }^{*} c_{11} & \text { MSE }^{*} c_{12} & \text { MSE }^{*} c_{13} \\
\text { MSE }^{*} c_{20} & \text { MSE }^{*} c_{21} & \text { MSE }_{22} & \text { MSE }^{*} c_{23} \\
\text { MSE }^{*} c_{30} & \text { MSE }^{*} c_{31} & \text { MSE }^{*} c_{32} & \text { MSE }^{*} c_{33}
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{s}_{b_{00}}^{2} & \mathrm{~s}_{b_{01}} & s_{b_{02}} & \mathrm{~s}_{b_{03}} \\
\mathrm{~s}_{b_{10}} & \mathrm{~s}_{b_{11}}^{2} & \mathrm{~s}_{b_{12}} & \mathrm{~s}_{b_{13}} \\
\mathrm{~s}_{b_{20}} & \mathrm{~s}_{b_{21}} & \mathrm{~s}_{b_{22}}^{2} & \mathrm{~s}_{b_{23}} \\
\mathrm{~s}_{b_{30}} & \mathrm{~s}_{b_{31}} & \mathrm{~s}_{b_{32}} & \mathrm{~s}_{b_{33}}
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
\operatorname{Var}\left(b_{1}\right) & \operatorname{Cov}\left(b_{1} b_{2}\right) & \ldots & \operatorname{Cov}\left(b_{1} b_{n}\right) \\
\operatorname{Cov}\left(b_{2} b_{1}\right) & \operatorname{Var}\left(b_{2}\right) & \ldots & \operatorname{Cov}\left(b_{2} b_{n}\right) \\
\vdots & & & \\
\operatorname{Cov}\left(b_{n} b_{1}\right) & \operatorname{Cov}\left(b_{n} b_{2}\right) & \ldots & \operatorname{Var}\left(b_{n}\right)
\end{array}\right]=\text { Var-Cov matrix }
$$

where the $\mathrm{c}_{i j}$ values are called Gaussian multipliers. The
VARIANCE - COVARIANCE matrix is then calculated from this matrix by multiplying by the MSError.

These are unbiased estimates of σ_{b}^{2}
The individual values then provide the variances and covariances such that

$$
\text { MSE }^{*} \mathrm{c}_{00}=\text { Variance of } \mathrm{b}_{0}=\operatorname{VAR}\left(\mathrm{b}_{0}\right)
$$

MSE ${ }^{*} \mathrm{c}_{11}=$ Variance of $\mathrm{b}_{1}=\operatorname{VAR}\left(\mathrm{b}_{1}\right)$, so $\mathrm{s}_{\mathrm{b}_{1}}=\sqrt{\mathrm{MSE}^{*} \mathrm{c}_{11}}$
MSE* $\mathrm{c}_{01}=$ MSE $^{*} \mathrm{c}_{10}=$ Covariance of b_{0} and $\mathrm{b}_{1}=\operatorname{COV}\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right)$

Prediction of mean response

For simple linear regression we got $\hat{\mathrm{Y}}$ and its CI for some X_{h}
For multiple regression, we need an X_{h} for each X_{j}
Given a vector of $\underline{X}_{h}=\left[\begin{array}{c}1 \\ \mathbf{X}_{h 1} \\ \mathbf{X}_{h 2} \\ \vdots \\ \mathbf{X}_{h, p-1}\end{array}\right]$
$\mathrm{E}\left(\mathrm{Y}_{h}\right)=\underline{\mathrm{X}}_{h} \beta$
$\hat{\mathrm{Y}}_{h}=\underline{\mathrm{X}}_{h} \mathrm{~B}$
The variance estimates for mean responses are given by MSE* $\mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}$
for individual observations, add one MSE MSE + MSE ${ }^{*}\left(X^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}$

$$
\mathrm{P}\left(\hat{\mathrm{Y}}_{h}-\mathrm{t}_{1-\frac{\alpha}{2}, n-\mathrm{p}} \mathrm{~s}_{\hat{\mathrm{Y}}_{h}} \leq \mathrm{E}\left(\hat{\mathrm{Y}}_{h}\right) \leq \hat{\mathrm{Y}}_{h}+\mathrm{t}_{1-\frac{\alpha}{2}, n-\mathrm{p}} \mathrm{~s}_{\hat{\mathrm{Y}}_{h}}\right)=1-\alpha
$$

simultaneous estimates of several mean responses can employ either the
Working-Hotelling approach

$$
\hat{\mathrm{Y}}_{h} \pm \mathrm{Ws}_{b_{\hat{\mathrm{Y}}_{h}}} \text { where } \mathrm{W}^{2}=\mathrm{pF}_{1-\alpha ; p, n-p}
$$

or the Bonferroni approach

$$
\hat{\mathrm{Y}}_{h} \pm \mathrm{Bs}_{b_{\hat{Y}_{h}}} \quad \text { where } \mathrm{B}=\mathrm{t}_{1-\frac{\alpha}{2 g} ; n-p}
$$

for individual observations the prediction is the same $\hat{\mathrm{Y}}_{h}=\underline{\mathrm{X}}_{h}^{\prime} \mathrm{B}$
and the variance is one MSE larger than for the mean

$$
\mathrm{MSE}+\mathrm{MSE} * \mathrm{X}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}
$$

and for the mean of a new sample of size m, the variance is

$$
\frac{\text { MSE }}{\mathrm{m}}+\mathrm{MSE} * X\left(\mathrm{X}^{\prime} X\right)^{-1} \mathrm{X}^{\prime}
$$

As with the SLR, confidence intervals of g new observations can be done with

Scheffé limits

$$
\hat{\mathrm{Y}}_{h} \pm \mathrm{Ss}_{b_{\hat{Y}_{h}}} \text { where } \mathrm{S}^{2}=\mathrm{gF}_{1-\alpha ; \mathrm{g}, n-p}
$$

or the Bonferroni approach

$$
\hat{\mathrm{Y}}_{h} \pm \mathrm{Bs}_{b_{\hat{\mathrm{Y}}_{h}}} \quad \text { where } \mathrm{B}=\mathrm{t}_{1-\frac{\alpha}{28} ; n-p}
$$

Coefficient of Multiple Determination - the proportion of the SSTotal (usually corrected) accounted for by the Regression line (SSReg).

Models with an intercept

$$
\begin{aligned}
\mathrm{R}^{2}= & \frac{\mathrm{SS}_{\mathrm{R}}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{k}} \mid \mathrm{b}_{0}\right)}{\mathrm{S}_{\mathrm{YY}}}=\frac{\mathrm{SSRegression}}{\text { SSTotal (corrected) }}=\frac{\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}-\mathrm{CF}}{\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{CF}}=\frac{\mathrm{SS}_{\mathrm{YY}}-\mathrm{SS}_{\mathrm{E}}}{\mathrm{~S}_{\mathrm{YY}}}=1-\frac{\mathrm{SS}_{\mathrm{E}}}{\mathrm{~S}_{\mathrm{YY}}} \\
& =\frac{21.24}{39.09}=0.5434
\end{aligned}
$$

Recalling the expressions for S_{R} we have

$$
\mathrm{R}^{2}=\frac{\mathrm{b}^{\prime} \mathrm{X}^{\prime} \mathrm{Y}-\mathrm{n} \overline{\mathrm{Y}}^{2}}{\mathrm{Y}^{\prime} \mathrm{Y}-\mathrm{n} \overline{\mathrm{Y}}^{2}}=\frac{\Sigma\left(\hat{\mathrm{Y}}_{i}-\overline{\mathrm{Y}}\right)^{2}}{\Sigma\left(\mathrm{Y}_{i}-\mathrm{Y}\right)^{2}}=1-\frac{\mathrm{SS}_{\mathrm{E}}}{\text { SSTotal (UNCorrected) }}
$$

Some Properties of R^{2} : Same as for SLR

1) $0 \leq R^{2} \leq 1$
2) $\mathrm{R}^{2}=1.0$ iff $\hat{\mathrm{Y}}_{i}=\mathrm{Y}_{i}$ for all i (perfect prediction, $\mathrm{SSE}=0$)
3) $\mathbf{R}^{2}=\mathbf{r}_{\mathbf{X Y}}^{2}$ for simple linear regression
4) $\mathbf{R}^{2}=r_{\hat{\mathbf{Y}} \mathbf{Y}}^{2}$ for all models with intercepts
5) $\mathrm{R}^{2} \neq 1.0$ when there are different repeated values of Y_{i} at some value of X_{i} (no matter how well the model fits)
6) $R_{\text {SubModel }}^{2} \leq R_{\text {FullModel }}^{2}$

New independent variables added to a model will increase R^{2}. The R^{2} for the full model could be EQUAL, but never less than the R^{2} for the submodel

F test for Lack of Fit

$$
\mathrm{E}(\mathrm{Y})=\beta_{0}+\beta_{1} \mathrm{X}_{1 i}+\beta_{2} \mathrm{X}_{2 i}+\beta_{3} \mathrm{X}_{3 i}+\ldots+\beta_{p-1} \mathbf{X}_{p-1, i}
$$

To get true repeats in multiple regression, EVERY independent variable must remain the same from one observation to another

This can be calculated with either full and reduced model

New problems associated with MULTIPLE REGRESSION
The SLR fitted only a single slope, so we needed only one SSReg to describe it. With various slopes, we will need some other sums of squares to describe the various fitted slopes.
we will actually see 2 types of SS
non-problems associated with Multiple regression
a) All previous definitions and notation apply.
b) The assumptions are basically the same (more X_{i}, each measured without error).

Many of the tests of hypothesis will be discussed in terms of the General Linear Test, with appropriate Full and Reduced models.

This test does not really change with multiple regression, We still have the same table,

Model		d.f	SS	MS	F
Reduced (Error)	n -p		$\mathrm{SSE}_{\text {Red }}$		
Full (Error)	$n-p-q$		$\mathrm{SSE}_{\text {Full }}$		
Difference	q		SS ${ }_{\text {Diff }}$	$\mathrm{MS}_{\text {Diff }}$	$\frac{\mathrm{MS}_{\text {Diff }}}{\mathrm{MSE}}$
Full (Error)	n-p-q		$\mathrm{SSE}_{\text {Full }}$	$\mathrm{MSE}_{\text {Full }}$	
Model		d.f	SS	MS	F
Full (SSReg)	$p+q$		$\mathrm{SSR}_{\text {Red }}$		
Reduced (SSReg)	p		$\mathrm{SSR}_{\text {Full }}$		
Difference	q		SS ${ }_{\text {Diff }}$	MS ${ }_{\text {Diff }}$	$\frac{\mathrm{MS}_{\text {Difif }}}{\mathrm{MS} \mathrm{E}_{\text {Full }}}$
Full (Error)	n-p-q		$\mathrm{SSE}_{\text {Full }}$	$\mathrm{MSE}_{\text {Full }}$	

