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Measurement errorsin X

We have assumed that all variationisinY. Measurement error in thisvariable
will not effect the results, as long as they are uncorrelated and unbiased,
since they cancel out.

However, we have assumed that X is measured without error, and measurement
error in this variable can cause error. Since all error is“vertical”, we
cannot incorporate this measurement error into our model. Asaresult,
this additional error must, in some way, get incorporated into the model
and/or its error.

often it isnot true that X is measured without error particularly in meristic
relationships

eg.
height of brother — height of sister
body length — scale length
length — weight
L et the measurement error in X; bedenoted as§; = X! — X;
where X isthe measured value and X; is the true value of the variable.
Then, when fitting the supposed model
Yi = fo + B1Xi + €

we are actually fitting
Yi = fo + Bi(X] —6&) + ¢

and, multiplying out and grouping variability effects,
Yi = Bo + B1X] + (6 — 6:i51)
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Asaresult,
a) X? isnot fixed (measured without error), it is arandom variable
b) The variance termis not longer independent of X;, since §; contains X;

c) by and b, are biased (towards zero) and

lack consistency (i e.nl_i’rgO P(%Z- — 3;)>€)=0 where ¢ is some arbitrary,

positive real number; so %Z does not tend toward 3; probabilistically asn
Increases infinitely)

d) There are a couple of cases or aspects of the variation in X; where variation is
not a problem.

a) X; may be arandom variable, not under the control of the investigator.
However, thisis not a problem aslong as the value of X; is measured
without measurement error and is known exactly.

b) the Berkson Model is a special case where measurement error does not
effect the results, it cancels out.

In this model, the situation for X and X; isreversed. If X is some fixed
value that the investigator is shooting for (for example, by setting some
machine value; as athermostat, adjusting a current speed, or some other
machine setting) then the measured value, X is a constant while the true
value, X;, isthe random variable.
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What to do?
1) Don't have measurement error.
2) Pretend you don't have measurement error.

3) if only 1 variable has error, then it must be used asthe dependent
variable. Inverse prediction (fitting Y on X and then making inference
about X) is the next topic.

4) Measure the measurement error and adjust for it. There are waysto do

this.
eg. Snedecor and Cochran (1980): we want to fit

Y =00+ 61X,
but we are using

Y =by +bi/X7, whereXs haserror so X7 =(X +€)

Thenby/is B/ = 125

where A = =%, indicatesthe magnitude of the bias

2
NI N

(1 isregression coefficient for X measured without error and is called the
structural regression coefficient. We no longer have an unbiased estimate
of this parameter.

obtain estimate of o2, error in X = S2
obtain estimate of o2, variancein X = S2

assume error in e, e and X is normal then

N 2
A =g

= = _b
51 bl a+ 5\\)

This estimates with error in'Y only (no variability in X) as per the
assumptions.
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5) another solution — RICKER (1973) approach (limited utility, but individual
applications are discussed by RICKER)

Ricker points out that many predictive equationsin  fisheriesare
underestimated (bias is actually towards 0, those mentioned have
positive slopes)

suggests 2 solutions
(1) Central axisor " geometric mean" axis

Brothers Height (YY)
Y

o

X

|
SISTERS HEIGHT (X)
(@) regressY on X — vertical error
(b) regressX onY — horizontal error
(c) for X and Y bivariate normal the line which splits the difference such
that

b, forYonX = b—ll forX onY

IS given by

<
I
H-
<
I
H-
L
I
H-
k=2

T+ = £ \/bf+S§1(N—2)
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(d) Ricker callsthe line the GM (geometric mean axis)

THISLINE ISNOT A BISECTOR, though it will always fall between the
other two lines

It isthelineisthat which minimizes the product of the horizontal and
vertical distances of the point from the line.

Y.

v

(e) once the new slope is obtained, the intercept can be calculated as usual

X

Y — brX

6) MAJOR AXIS — Thelinethat minimizesthe SS (perpendicular distance) of
observed points to the fitted line

Yy? — Bx2 + 1/(Ex2—Xy?)2 + 4(Xxy)?

Z= 23xy

if e isthe measurement error in'Y
and e, isthe measurement error in X

then this equation presumesthat e; = e,
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A MORE GENERAL EQUATION — availablein software SUPERCARP
(Wayne Fuller, Stat Dept., lowa)

employs an expression § = 2 | then

% — Dy — 65x% + \/(6Dx2—Xy2)2 + 45(Exy)?
1 - 2 XXy

If 6 # 1, then the distance minimized is not perpendicular

NOTE: In all of the above cases, once the slope has been calculated, the
Intercept is obtained by

b() = Y_ — bl)?
For our purposes,

Generally aleast squares fit with traditional assumptions will be adequate
We will consider a correction to some equations, particularly

when we expect some theoretical value
eg. b1 =3

Note: Ricker (1973) suggests specific applications of either
— geometric mean axis or
— maor axis

and provides equations for the variance of each
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Inverse Prediction : Sometimesit is necessary to make predictions of the

independent variable, X;, instead of the dependent variable, Y.

This may occur because we have only the regression equation available, and
not the original data.

Or it may be that we are interested in predicting X;, which is measured
without error, from Y, which is measured with error.

The process of predicting the independent variable from the dependent
variableis called “inverse prediction”.

Inverse prediction starts the same asany SLR
The population model is
Yi =6+ 0iX; + ¢

And the usual least squares analysisis done on a sample of n observations
from the parent population.

N
Yi = by +1X;

In order to estimate )QZ for some value of Y,, we then solve the equation for
N\
X.

x>

= % whereb; # 0 (ie arelationship must exist)

a confidence interval for the new observation X;, is given by

_ MSE 1 R, —X)?
§<h T (1 + 57 z(xhlx')'c))

which is atransformation of the same equation we used before. Thisisan
approximate value, which your book points out is appropriate if

[t17%77172:| 2* MSE . .
PR X issmall (ie<0.1)
in our case (Vial example), 2-?;102?1*02-2 = 888 _ 007311, within the

recommended
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For our vial breakage example;

Anal ysis of Variance

Page 8

Sum of Mean

Sour ce DF Squar es Squar e F Val ue Pr ob>F
Model 1 160. 00000 160. 00000 72.727 0. 0001
Error 8 17. 60000 2. 20000
C Tot al 9 177. 60000

Root MSE 1.48324 R-square 0. 9009

Dep Mean 14. 20000 Adj R-sq 0. 8885

C. V. 10. 44535
Par anet er Estimates

Par anet er St andar d T for HO:

Vari able DF Estimate Error Par anmet er =0 Prob > | T|
| NTERCEP 1 10. 200000 0. 66332496 15. 377 0. 0001
X 1 4. 000000 0.46904158 8. 528 0. 0001

The equation to predict X is given by, suppose we wish to predict how may
transfers would cause 20 vialsto be broken.

>’2 _ Yu—hy _ Y,—102 __ 20-10.2 9.8

h— Tb 4 = 4 — a4 = 245

a confidence interval for the new observation )Qh=2.45 isgiven by

R, %2
£(i 1o 4%)
<1+ = (22;‘51012> 01375(
10

= 0.1375*0.31025 = 0.04266

= 1/0.04266 =

§ h = b2

1,4 21025
+ 10 )

S, 0.20654
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since te sy = 2.306, then

I
g
2

N N N\
P(Xv=20 —ti—gn28 < E(X) < Xy=0+ 15,28 )
P(2.45 — 2.306*0.2065 < E(X) < 2.45+ 2.306*0.2065) — 0.95

P(L.9738 < E(X) < 29262) = 0.95

so it appears most likely that 2 transfers would be involved in this damage, though
3 transfersis not out of the question.



