Coefficient of Determination - R²

- The SSTotal (corrected) is the amount of unexplained variation which exists without a regression line.
- The SSRegression is that part of the SSTotal which is explained by the regression line.
- $R²$ is the proportion of the SSTotal (corrected) accounted for by the Regression line (SSReg).

$$
R^2 = \tfrac{SS_{\text{Regression}}}{SS_{\text{Total}}} = \tfrac{SS_{\text{Total}} - SS_{\text{Error}}}{SS_{\text{Total}}} \ = 1 \ - \ \tfrac{SS_{\text{Error}}}{SS_{\text{Total}}}
$$

Some Properties of R²

3) $R^2 = r_{XY}^2$ for simple linear regression

For a simple linear regression, the "correlation" is between either X_i and Y_i or Y_i and \hat{Y}_i . These are the same since \hat{Y}_i is a linear function of X_i .

In the general case (multiple regression) there are various X's, so the correlation is between Y_i and \overline{Y}_i only.

for all models with intercepts 4) $R^2 = r_{\hat{Y}Y}^2$

5) R² \lt 1.0 when there are different repeated values of Y_i at some value of X_i (no matter how well the model fits)

Proofs:

1 through 3 are trivial

4)
$$
r_{\hat{Y}Y}^2 = \frac{(\Sigma(\hat{Y}_i - \hat{Y})Y_i)^2}{\Sigma(Y_i - \bar{Y})^2 \Sigma(\hat{Y}_i - \bar{Y})^2}
$$
, and since $\hat{Y} = \overline{Y}$
\n
$$
= \frac{(\Sigma \hat{Y}_i Y_i - n\overline{Y}^2)^2}{\Sigma(Y_i - \bar{Y})^2 \Sigma(\hat{Y}_i - \bar{Y})^2}
$$
 since $\Sigma \hat{Y}_i Y_i = \Sigma \hat{Y}_i (\hat{Y}_i + e_i) = \Sigma \hat{Y}_i + \Sigma \hat{Y}_i e_i = \Sigma \hat{Y}_i$
\n
$$
= \frac{\Sigma(\hat{Y}_i - \bar{Y})^2}{\Sigma(Y_i - Y)^2} = R^2
$$

5) we will come back to this proof later

6) Model: $Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$ SSResidual = $\Sigma(Y_i - \hat{Y}_1)^2 = SS_1$ $\hat{Y}_i = b_0 + b_1 X_{1i}$ Model: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$ SSResidual = $\Sigma(Y_i - \hat{Y}_1)^2 = SS_2$ $\overset{\mathbf{A}}{ \mathbf{Y}}_i = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_{1 i} + \mathbf{b}_2 \mathbf{X}_{2 i}$

where b_0 , b_1 and b_2 are the OLS estimators

Then it is clear that $SS_2 \leq SS_1$, and therefore

$$
\quad \tfrac{SS_2}{S_{YY}}\quad \leq\quad \tfrac{SS_1}{S_{YY}}
$$

Therefore, R^2 does not **DECREASE** when additional variables are added to a model. It generally **INCREASES**, though it may stay the same.

Correlation coefficient "r"

this is a measure of the linear association between two variables

$$
\mathbf{r} = \frac{\Sigma(\mathrm{X}_i - \overline{\mathrm{X}})(\mathrm{Y}_i - \overline{\mathrm{Y}})}{\sqrt{\Sigma(\mathrm{Y}_i - \overline{\mathrm{Y}})^2\Sigma(\mathrm{X}_i - \overline{\mathrm{X}})^2}}
$$

and it is also given by the square root of the coefficient of determination

 $r = R²$ with the sign added to match the slope

either can be used, though the R^2 seems to have a clearer interpretation

However, r is often used, possibly because it will be closer to 1 for any R^2 value except 0 and 1

eg

if
$$
R^2 = 0.25
$$
 then $r = \sqrt{0.25} = 0.50$ which appears "better"

- For a simple linear regression, the "correlation" calculated is between either X_i and Y_i or Y_i and \hat{Y}_i . These are the same since \hat{Y}_i is a linear function of X_i .
- In the general case (multiple regression) there are various X 's, so the correlation is between Y_i and \overline{Y}_i only.

Tabular value: $F_{0.05, 1.8 \text{ df}} = 5.32$,

so $F_0 > F_{0.05, 1.8 \, df}$ and we REJECT H₀

 $R^2 = \frac{160.0}{177.6} = 0.9009$ or 90.09%

 so we can state that this model accounts for 90.09% of the total variation (after adjusting for the mean).

What is a "GOOD" R^2 value?

- It depends on your **expectations**. If you regress something that you KNOW is a strong relationship (eg. a fishes body length on his weight, or the length of peoples right arms versus their left arms) you may expect an \mathbb{R}^2 of 0.93 or 0.95, and you may consider a value of 0.80 or 0.85 to be "POOR".
- If you have a model which you do not expect to be good, (eg. Can I predict the density of fish in an area from the width of the stream at that point?), you may be very happy with an \mathbb{R}^2 of 0.30 or 0.40.