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Prediction of a new observation : note that this is a single observation, not the
regression line.

First, the variance of a generic linear combination (from Chapter 1:1.27a & b)

  T  aW bX  cZœ  

  E(T)   aE(W) bE(X)  cE(Z)œ  

  Var(T)   a Var(W) b Var(X)  c Var(Z)  + 2(Covariances)œ  2 2 2

  Var(T)   a Var(W) b Var(X)  c Var(Z)œ  2 2 2

     abCov(W,X) bcCov(X,Z)  acCov(X,Z) 

If we are able to assume that the three terms are stochastically independent, then
the covariances are equal to zero.

We have already seen a series of Linear Combinations

 1) First we saw,

   b    =       k Y" 3 3
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  so, Var(b )  k Var(Y ) + k Var(Y ) + k Var(Y ) + ..." " # $" # $œ 2 2 2

 since all Y  at all values of X  have the same variance (homogeneous), then3 3
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 and that Var(Y ) is estimated by the MSE, then3
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1) Show that b  is a linear combination of k   " 3
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 where
  b)   (X X)(Y Y) = (X Y XY X Y XY)

_ _– – – –
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   = (X X)Y (X X)Y– –_
D D3 3 3  

  = (X X)Y Y (X X)– – _
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 and since

    (X X)  0
_

D 3  œ
 then
  c)   (X X)(Y Y) = (X X)Y

_ _–
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 as a result,

  d)  b   =       Y   k Y" 3 3 3
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 where
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2) Then we say that Y  = b   b X  , also a linear combination.^
3 ! " 3

 Var(Y ) =  1*Var(b )  X *Var(b )  2*1*X *Cov(b ,b )^
3 ! 3 " 3 ! " 

 note that we do NOT assume that b  and b  are independent.! "

The covariance is included, not equal to zero.

Using previous definitions of Var(b ) and Var(b ), and the Gaussian multipliers! "

from the (X X)  matrix for the covariancew "-

 Var(Y )= *1 *X 2*1*X^
3 33
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 Var(Y ) =     +  ^
3
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3) Now we want a confidence interval for a single (new) observation.

 The equation for that observation is

   Y  = b   b X   3 ! " 3 3  %
 or

   Y  = Y   ^
3 3 3 %

 We assumed independence once before (each Y  independent of others).  We are3

now going to assume independence again.  We assume that the residuals

are independent of the model (ie. assume that  are independent of Y ).^%3 3

So the variance of single observations will be

   Var(Y ) = Var(Y )  Var( )  2*Cov(Y , ) 0^ ^
3 3 3 3 3  œ% %’ “
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We know from previous work that

  Var(Y ) =     +  ^
3
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  Var( )   % 53 œ 2

 therefore

   Var(Y ) =    +     3
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 or

   Var(Y ) =  1      +  3
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 where the estimator of  is MSE52

  Note that both your textbook and I have been using  for both Var(Y ) and52
3

for Var( ).  Each is “the variance", but they are variances of different%3
things.  A better notation perhaps is Var( )  % 53 œ 2

%

 There is another confidence interval of potential interest between

  Var(Y ) =     +   , the regression line^
3
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  and

  Var(Y ) =  1      +   , a new observation3
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 This is the confidence interval for the mean of a new sample taken at some
particular value of X , where m is the size of the new sample.  This cannot3

be as narrow as the confidence interval for the regression, but should be
narrower than the confidence interval for a single sample.  This CI is given
by,

  Var(Y ) =        +   , X for a new sample–
3
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Example : From  examplevial breakage regressed on number of airline transfers
 Place a confidence interval on the breakage for 3 transfers for a single new

observation.

  s  = MSE 1    +  2
Y

1
n

(X X)
_

(X X)
_

3

3

3  


2

2D

  = 2.2 1    +    = 2.2 1  +  = 2.2*1.5 = 3.3    1 1 4
10 10 10
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we previously calculated the variance of the regression line at s   1.1.  Note2
Ŷ3

œ

that the variance of a single point is s s  = 1.1 2.2 3.32 2
Ŷ3

  œ

  s   3.3  1.816Y3
œ œÈ

 since t   2.306, then!
# ß ) .0  œ

  P(Y t  s   E(Y)  Y t  s  )   1-^ ^ ^
X=3 Y X=3 Y Ÿ Ÿ  œ" ß8# " ß8#! !

# #3 3
!

  P(22.2 2.306*1.816  E(Y)  22.2 2.306*1.816)   1-^ Ÿ Ÿ  œ !

  P(18.011  E(Y)  26.389)   0.95^Ÿ Ÿ œ

 SAS will calculate confidence intervals for either the regression line (option
CLM) or for individual points (option CLI).  But not for a new sample.

Check this against the SAS output

jay
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 Suppose were were to ship 4 cases through 3 transfers.  What is the confidence
interval for the mean breakage of 4 cases?

  s  = MSE     +   = 2.2   +  2
Y m n 4 10
_ 1 1 1 1(X X) (3 1)
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(X X)
_
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    = 2.2  +  = 2.2*0.75 = 1.65 1 1 4
4 10 10

  s   1.65  1.2845Y
_
3
œ œÈ

 since t   2.306, then!
# ß ) .0  œ

  P(Y t  s   E(Y)  Y t  s  )   1-
_ _ _

X=3 X=3Y Y
_ _ Ÿ Ÿ  œ" ß8# " ß8#! !

# #3 3
!

  P(22.2 2.306*1.2845  E(Y)  22.2 2.306*1.2845)   1-
_

 Ÿ Ÿ  œ !

  P(19.238  E(Y)  25.162)   0.95
_

Ÿ Ÿ œ

The MEAN of the 4 cases falls in this range.
 The CI for the regression line is narrower
 The CI for individual points is higher
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