Prediction of a new observation : note that this is a single observation, not the regression line.

First, the variance of a generic linear combination (from Chapter 1:1.27a \& b)

$$
\begin{aligned}
& \mathrm{T}=\mathrm{aW}+\mathrm{bX}+\mathrm{cZ} \\
& \mathrm{E}(\mathrm{~T})=\mathrm{aE}(\mathrm{~W})+\mathrm{bE}(\mathrm{X})+\mathrm{cE}(\mathrm{Z}) \\
& \operatorname{Var}(\mathrm{T})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{~W})+\mathrm{b}^{2} \operatorname{Var}(\mathrm{X})+\mathrm{c}^{2} \operatorname{Var}(\mathrm{Z})+2(\text { Covariances }) \\
& \operatorname{Var}(\mathrm{T})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{~W})+\mathrm{b}^{2} \operatorname{Var}(\mathrm{X})+\mathrm{c}^{2} \operatorname{Var}(\mathrm{Z}) \\
& \mathrm{abCov}(\mathrm{~W}, \mathrm{X})+\mathrm{bc} \operatorname{Cov}(\mathrm{X}, \mathrm{Z})+\mathrm{ac} \operatorname{Cov}(\mathrm{X}, \mathrm{Z})
\end{aligned}
$$

If we are able to assume that the three terms are stochastically independent, then the covariances are equal to zero.

We have already seen a series of Linear Combinations

1) First we saw,

$$
\begin{aligned}
& \mathrm{b}_{1}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \mathrm{Y}_{i}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{i} \mathrm{Y}_{i} \\
& \text { so, } \operatorname{Var}\left(\mathrm{b}_{1}\right)=\mathrm{k}_{1}^{2} \operatorname{Var}\left(\mathrm{Y}_{1}\right)+\mathrm{k}_{2}^{2} \operatorname{Var}\left(\mathrm{Y}_{2}\right)+\mathrm{k}_{3}^{2} \operatorname{Var}\left(\mathrm{Y}_{3}\right)+\ldots
\end{aligned}
$$

since all Y_{i} at all values of X_{i} have the same variance (homogeneous), then

$$
=\sum_{i=1}^{\mathrm{n}} \mathrm{k}_{i}^{2} \operatorname{Var}\left(\mathrm{Y}_{i}\right)
$$

and recall that $\quad \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{i}^{2}=\frac{1}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}$
and that $\operatorname{Var}\left(\mathrm{Y}_{i}\right)$ is estimated by the MSE, then

$$
\operatorname{Var}\left(\mathrm{b}_{1}\right)=\frac{\mathrm{MSE}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}
$$

1) Show that b_{1} is a linear combination of $k_{i}\left(=\frac{\left(X_{i}-\bar{X}\right)}{\Sigma\left(X_{i}-X\right)^{2}}\right)$
a) $\mathrm{b}_{1}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{i}-\bar{Y}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}$
where
b) $\quad \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)=\Sigma\left(\mathrm{X}_{i} \mathrm{Y}_{i}-\overline{\mathrm{X}} \mathrm{Y}_{i}-\mathrm{X}_{i} \overline{\mathrm{Y}}+\overline{\mathrm{X}} \overline{\mathrm{Y}}\right)$

$$
\begin{aligned}
& =\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \mathrm{Y}_{i}-\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \overline{\mathrm{Y}} \\
& =\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \mathrm{Y}_{i}-\overline{\mathrm{Y}} \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)
\end{aligned}
$$

and since

$$
\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)=0
$$

then
c) $\quad \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)=\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \mathrm{Y}_{i}$
as a result,
d) $\mathrm{b}_{1}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{Y}_{i}-\overline{\mathrm{Y}}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right) \mathrm{Y}_{i}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}} \mathrm{Y}_{i}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{i} \mathrm{Y}_{i}$
where

$$
\text { e) } \quad \Sigma \mathrm{k}_{i}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}=\frac{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}
$$

note that $\Sigma \mathrm{k}_{i}=0$ since $\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)=0$
now prove that $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{i}^{2}=\frac{1}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}$

$$
\text { f) } \begin{aligned}
& \Sigma \mathrm{k}_{i}^{2} \quad=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right]^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\left[\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}\right]^{2}} \\
& =\frac{1}{\left[\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}\right]^{2}} \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}=\frac{1}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}
\end{aligned}
$$

2) Then we say that $\hat{Y}_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{i}$, also a linear combination.

$$
\operatorname{Var}\left(\hat{\mathrm{Y}}_{i}\right)=1 * \operatorname{Var}\left(\mathrm{~b}_{0}\right)+\mathrm{X}_{i} * \operatorname{Var}\left(\mathrm{~b}_{1}\right)+2^{*} 1^{*} \mathrm{X}_{i} * \operatorname{Cov}\left(\mathrm{~b}_{0}, \mathrm{~b}_{1}\right)
$$

note that we do NOT assume that b_{0} and b_{1} are independent.
The covariance is included, not equal to zero.
Using previous definitions of $\operatorname{Var}\left(\mathrm{b}_{0}\right)$ and $\operatorname{Var}\left(\mathrm{b}_{1}\right)$, and the Gaussian multipliers from the $\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$ matrix for the covariance

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\mathrm{Y}}_{i}\right)=\sigma^{2} * 1^{2}\left[\frac{1}{\mathrm{n}}+\frac{\overline{\mathrm{X}}^{2}}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}\right]+\sigma^{2} * \mathrm{X}_{i}^{2}\left[\frac{1}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}\right]+2 * 1 * \mathrm{X}_{i} \sigma^{2}\left[\frac{-\Sigma \mathrm{X}_{i}}{\mathrm{n} \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X})^{2}}\right.}\right] \\
& \operatorname{Var}\left(\hat{\mathrm{Y}}_{i}\right)=\sigma^{2}\left[\frac{1}{\mathrm{n}}+\frac{\overline{\mathrm{X}}^{2}}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X})^{2}}\right.}+\frac{\mathrm{X}_{i}^{2}}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X})^{2}}\right.}-\frac{2 \mathrm{X}_{i} \overline{\mathrm{X}}}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}\right] \\
& \operatorname{Var}\left(\hat{\mathrm{Y}}_{i}\right)=\sigma^{2}\left[\left[\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right]\right]
\end{aligned}
$$

3) Now we want a confidence interval for a single (new) observation.

The equation for that observation is

$$
\mathrm{Y}_{i}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{i}+\epsilon_{i}
$$

or

$$
\mathrm{Y}_{i}=\hat{\mathrm{Y}}_{i}+\epsilon_{i}
$$

We assumed independence once before (each Y_{i} independent of others). We are now going to assume independence again. We assume that the residuals are independent of the model (ie. assume that ϵ_{i} are independent of $\hat{\mathrm{Y}}_{i}$).

So the variance of single observations will be

$$
\operatorname{Var}\left(\mathrm{Y}_{i}\right)=\operatorname{Var}\left(\hat{\mathrm{Y}}_{i}\right)+\operatorname{Var}\left(\epsilon_{i}\right)+\left[2 * \operatorname{Cov}\left(\hat{\mathrm{Y}}_{i}, \epsilon_{i}\right)=0\right]
$$

We know from previous work that

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right] \\
& \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}
\end{aligned}
$$

therefore

$$
\operatorname{Var}\left(\mathrm{Y}_{i}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right]+\sigma^{2}
$$

or

$$
\operatorname{Var}\left(\mathrm{Y}_{i}\right)=\sigma^{2}\left[1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right]
$$

where the estimator of σ^{2} is MSE
Note that both your textbook and I have been using σ^{2} for both $\operatorname{Var}\left(\mathrm{Y}_{i}\right)$ and for $\operatorname{Var}\left(\epsilon_{i}\right)$. Each is "the variance", but they are variances of different things. A better notation perhaps is $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$

There is another confidence interval of potential interest between

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{Y}_{i}\right)=\sigma^{2}\left[\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{\Sigma\left(X_{i}-X\right)^{2}}\right] \text {, the regression line } \\
& \text { and } \\
& \operatorname{Var}\left(Y_{i}\right)=\sigma^{2}\left[1+\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{\Sigma\left(X_{i}-X\right)^{2}}\right], \text { a new observation }
\end{aligned}
$$

This is the confidence interval for the mean of a new sample taken at some particular value of X_{i}, where m is the size of the new sample. This cannot be as narrow as the confidence interval for the regression, but should be narrower than the confidence interval for a single sample. This CI is given by,

$$
\operatorname{Var}\left(\mathrm{Y}_{i}\right)=\sigma^{2}\left[\left[\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right], \overline{\mathrm{X}}\right. \text { for a new sample }
$$

Example : From vial breakage regressed on number of airline transfers example Place a confidence interval on the breakage for 3 transfers for a single new observation.

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{Y}_{i}}^{2}=\operatorname{MSE}\left(1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X})^{2}}\right.}\right) \\
& =2.2\left[\left(1+\frac{1}{10}+\frac{(3-1)^{2}}{20-\frac{1^{2}}{10}}\right)=2.2\left(1+\frac{1}{10}+\frac{4}{10}\right)\right]=2.2 * 1.5=3.3
\end{aligned}
$$

we previously calculated the variance of the regression line at $\mathrm{s}_{\hat{\mathrm{Y}}_{i}}^{2}=1.1$. Note that the variance of a single point is $\mathrm{s}_{\hat{\mathrm{Y}}_{i}}^{2}+\mathrm{s}^{2}=1.1+2.2=3.3$

$$
\mathrm{s}_{\mathrm{Y}_{i}}=\sqrt{3.3}=1.816
$$

since $\mathrm{t}_{\frac{\alpha}{2}, 8 d f}=2.306$, then

$$
\begin{aligned}
& \mathrm{P}\left(\hat{\mathrm{Y}}_{\mathrm{X}=3}-\mathrm{t}_{1-\frac{\alpha}{2}, n-2} \mathrm{~s}_{\mathrm{Y}_{i}} \leq \mathrm{E}(\hat{\mathrm{Y}}) \leq \hat{\mathrm{Y}}_{\mathrm{X}=3}+\mathrm{t}_{1-\frac{\alpha}{2}, n-2} \mathrm{~s}_{\mathrm{Y}_{i}}\right)=1-\alpha \\
& \mathrm{P}\left(22.2-2.306^{*} 1.816 \leq \mathrm{E}(\hat{\mathrm{Y}}) \leq 22.2+2.306^{*} 1.816\right)=1-\alpha \\
& \mathrm{P}(18.011 \leq \mathrm{E}(\hat{\mathrm{Y}}) \leq 26.389)=0.95
\end{aligned}
$$

SAS will calculate confidence intervals for either the regression line (option
CLM) or for individual points (option CLI). But not for a new sample.
Check this against the SAS output

Suppose were were to ship 4 cases through 3 transfers. What is the confidence interval for the mean breakage of 4 cases?

$$
\begin{aligned}
& \mathrm{s}_{\overline{\mathrm{Y}}_{i}}^{2}=\operatorname{MSE}\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}}{\Sigma\left(\mathrm{X}_{i}-\mathrm{X}\right)^{2}}\right)=2.2\left(\left(\frac{1}{4}+\frac{1}{10}+\frac{(3-1)^{2}}{20-\frac{1^{2}}{10}}\right)\right. \\
& =2.2\left(\frac{1}{4}+\frac{1}{10}+\frac{4}{10}\right)=2.2 * 0.75=1.65 \\
& \mathrm{~s}_{\bar{Y}_{i}}=\sqrt{1.65}=1.2845
\end{aligned}
$$

since $\mathrm{t}_{\frac{\alpha}{2}, 8 d f}=2.306$, then

$$
\begin{aligned}
& \mathrm{P}\left(\overline{\mathrm{Y}}_{\mathrm{X}=3}-\mathrm{t}_{1-\frac{\alpha}{2}, n-2} \mathrm{~s}_{\overline{\mathrm{Y}}_{i}} \leq \mathrm{E}(\overline{\mathrm{Y}}) \leq \overline{\mathrm{Y}}_{\mathrm{X}=3}+\mathrm{t}_{1-\frac{\alpha}{2}, n-2} \mathrm{~s}_{\overline{\mathrm{Y}}_{i}}\right)=1-\alpha \\
& \mathrm{P}\left(22.2-2.306^{*} 1.2845 \leq \mathrm{E}(\overline{\mathrm{Y}}) \leq 22.2+2.306 * 1.2845\right)=1-\alpha \\
& \mathrm{P}(19.238 \leq \mathrm{E}(\overline{\mathrm{Y}}) \leq 25.162)=0.95
\end{aligned}
$$

The MEAN of the $\mathbf{4}$ cases falls in this range.

The CI for the regression line is narrower The CI for individual points is higher

