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Using F tests instead of t-tests

We can also test the hypothesis   H : 0  versus H : 0  with an F test.! " " "" "œ Á

  F    œ MSRegression
MSError

 This test is mathematically identical to the previous test of H : =0 done with the! ""
t-test (see demonstration in text, which only demonstrates that F=t  for2

H : =0).   The probabilities are identical.! ""

 More generally, the first column in the F tables  (F ) is equivalent to the"ß./8 .0 

square of t.
   ie.
    t         F2

     # # !.0 à "ß .0 à!
#

œ

 Text mentions that t-test has the advantage that it can test one-tailed hypotheses,
while the F cannot.

Also, the t readily tests hypotheses other than 0.  This can also be done with"" œ
a non-central F test, but this is more difficult.

SAS has a test statement in PROC REG which produces an F value for testing
values other than 0, but you should know that:

 1) the t-test you would do is the same, and

 2) The SAS test is a two tailed test.  The t-test can be either one or two-
tailed

 3) The P value (P>F) given by SAS for the F value from the “TEST"
statement is exactly the same as it would be for the t-test.
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Expected Mean Squares for Regression

 Recall from ANOVA (simple CRD, balanced) that

 E(MSE)  œ 52

 E(MSTreatments) =   n5 52 2 7

 where  is the residual variance,  is the treatment variance and n is the5 52 2
7

number of replicates in each treatment

 and the quantity that we wanted to test was 52
7

The test used was F  œ 5 5
5

2 2

2
  n 7

We can see that

 1) F will be 1 if    0.  This would be the null hypothesis52
7 œ

 2) Power (the ability to detect a difference which exists) increases as we increase
n (sample size) or  (the treatment differences) or as we reduce  (the5 52 2

7

random error term).

Likewise for regression,

 E(MSE)    (this is deviations from regression)œ 52

 E(MSRegression) =   (X X)–
5 " D2 2 2 " 3

The test used was F  œ 5 " D
5

2 2 2

2
  (X X)–
 " 3

 1) F will be 1 if    0.  This would be the null hypothesis.  Also, since " "" 3œ
is squared, this will be a two tailed test.  For one tailed tests use the t-
test.

 2) Power (the ability to detect a difference which exists) increases as we
increase  (regression coefficient) or (X X)  (the corrected SS of–

" D3 3 
2

X ) or as we reduce  (the random error term).3 52
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Note that power increases as (X X)  increases, this occurs as we–
D 3 

2

  a) increase the distance from X  to X.  (Were is best place to put X ?)–
3 3

iX

Yi

iX

Yi

  

 but only if we know that it is a straight line

  b) increase n, since more squared differences are added (X X)–
D 3 

2

Also note that the term (X X)  will be positive since  is squared and the–
" D "2 2
" 3 3

SSX  will be positive.  Therefore, this test is one tailed.3
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EXAMPLE:  Using SAS to test hypotheses about  and " "! "

EXST7034 - EXAMPLE 1
Program Statements
*************************************************************;
*** EXST7034 Example 1 using PC-SAS                       ***;

*** Problem from Neter, Wasserman & Kuttner 1989, 2.19   ***;2

*************************************************************;
OPTIONS LS=80 PS=61 NOCENTER NODATE NONUMBER;
DATA ONE; INFILE CARDS MISSOVER;
          TITLE1 'EXST7034 - EXAMPLE 1';
   INPUT X Y;
CARDS;
raw data here
;
PROC SORT; BY X Y;
PROC PRINT;  TITLE2 'Raw Data Listing';
PROC REG;    TITLE2 'Regression Models done with SAS REG
procedure';
   MODEL  Y = X / XPX I P CLM;   TEST X = 5; RUN;

Model: MODEL1
Model Crossproducts X X X Y Y Yw w w

X X               INTERCEP                 X                 Yw

INTERCEP                10                10               142
X                       10                20               182
Y                      142               182              2194

X X Inverse, Parameter Estimates, and SSEw

                  INTERCEP                 X                 Y
INTERCEP               0.2              -0.1              10.2
X                     -0.1               0.1                 4
Y                     10.2                 4              17.6

EXST7034 - EXAMPLE 1
Regression Models done with SAS REG procedure
Dependent Variable: Y
Analysis of Variance
                    Sum of         Mean
Source     DF      Squares       Square      F Value       Prob>F
Model       1    160.00000    160.00000       72.727       0.0001
Error       8     17.60000      2.20000
C Total     9    177.60000

    Root MSE       1.48324     R-square       0.9009
    Dep Mean      14.20000     Adj R-sq       0.8885
    C.V.          10.44535
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Parameter Estimates
              Parameter      Standard    T for H0:
Variable  DF   Estimate         Error   Parameter=0    Prob > |T|
INTERCEP   1  10.200000    0.66332496        15.377        0.0001
X          1   4.000000    0.46904158         8.528        0.0001

     Note: 8.528 72.726782 œ

Output from the PROC REG “TEST" option for “TEST X = 5;"
Dependent Variable: Y
Numerator:     10.0000  DF:    1   F value:   4.5455
Denominator:       2.2  DF:    8   Prob>F:   0.0656

Notes:
1) t test of parameter estimate (= 8.528) is equal to the square root of the F test of

the model.  F  72.727 ;   F = 72.727 = 8.529.  These are the sameœ È È
test.

2) The value for the standard error of b  is"

  Var(b )  =    =    =     = 0.22 = s"
 ,

n MSE 2.2^

n X  - (X -X)
_

20
25

D D

2

2 ( X ) 102 2 2

n 10’ “3
3 3 "D

  s   0.22  0.46904158," œ œÈ
 Which is also equal to the square root of MSE*c  from the (X X)  matrix, where33

w "-

MSE = 2.2 and c   0.1."" œ

3) The value for the standard error of b  is!

 Var(b )  =    =    =      0.44!
D 5 D

D D
X X MSE

n X  - n (X -X)
_ 20*2.2

10*10

2 2 2

2 ( X )2 2

n

3 3

3
3 3’ “D

œ

 s   0.44  0.66332496,0 œ œÈ
 4) The TEST option was used to test the hypothesis that H : =5.  The! ""

alternative would be the two tailed alternative that H : 5." "" Á

The option produced the results:  F = 4.5455,  P(>F) = 0.0656
Which should be the square of t, or t = F  2.132.È œ

 t =              2.132
(b )

s s 0.46904158 0.46904158 
b 5 4.0 5 1" "! "

" "

  "

b b
œ œ œ œ
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EXST7034 - EXAMPLE 1 : Vial breakage regressed on number of airline transfers.

Example of confidence limits for the regression line at various values of X .  A3

missing value was included with an X value of 4.
Regression Models done with SAS REG procedure

        Dep Var   Predict   Std Err  Lower95%  Upper95%
  Obs      Y        Value   Predict      Mean      Mean  Residual
    1    8.0000   10.2000     0.663    8.6704   11.7296   -2.2000
    2    9.0000   10.2000     0.663    8.6704   11.7296   -1.2000
    3   11.0000   10.2000     0.663    8.6704   11.7296    0.8000
    4   12.0000   10.2000     0.663    8.6704   11.7296    1.8000
    5   13.0000   14.2000     0.469   13.1184   15.2816   -1.2000
    6   15.0000   14.2000     0.469   13.1184   15.2816    0.8000
    7   16.0000   14.2000     0.469   13.1184   15.2816    1.8000
    8   17.0000   18.2000     0.663   16.6704   19.7296   -1.2000
    9   19.0000   18.2000     0.663   16.6704   19.7296    0.8000
   10   22.0000   22.2000     1.049   19.7814   24.6186   -0.2000
   11         .   26.2000     1.483   22.7796   29.6204         .

Sum of Residuals           -1.59872E-14
Sum of Squared Residuals        17.6000
Predicted Resid SS (Press)      25.8529

 Example of confidence limits for a new point at various values of X .  A missing3

value was included with an X value of 4.

Regression Models done with SAS REG procedure

        Dep Var   Predict   Std Err  Lower95%  Upper95%
  Obs      Y        Value   Predict   Predict   Predict  Residual
    1    8.0000   10.2000     0.663    6.4532   13.9468   -2.2000
    2    9.0000   10.2000     0.663    6.4532   13.9468   -1.2000
    3   11.0000   10.2000     0.663    6.4532   13.9468    0.8000
    4   12.0000   10.2000     0.663    6.4532   13.9468    1.8000
    5   13.0000   14.2000     0.469   10.6127   17.7873   -1.2000
    6   15.0000   14.2000     0.469   10.6127   17.7873    0.8000
    7   16.0000   14.2000     0.469   10.6127   17.7873    1.8000
    8   17.0000   18.2000     0.663   14.4532   21.9468   -1.2000
    9   19.0000   18.2000     0.663   14.4532   21.9468    0.8000
   10   22.0000   22.2000     1.049   18.0109   26.3891   -0.2000
   11         .   26.2000     1.483   21.3628   31.0372         .

Sum of Residuals           -1.59872E-14
Sum of Squared Residuals        17.6000
Predicted Resid SS (Press)      25.8529
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Summary of the results due to the assumptions made

 (a)  S   =  MSE   then E(S )  =  2 2 25

 (b) Distributions

  (1)  b  is distributed N[ , (X X) ]3
w "" 52 -

  We do not assume Cov( , ) = 0 as with the Y's.  More later." "3 j

  (2)    is distributed FMSReg
MSE (df MSReg, df MSE)

 For multiple regression this is a joint test, so the distribution has a noncentrality
parameter which is zero when  , , ...  equals zero.   (When H  is" " "" # k o

true)

  (3)  In particular
      is distributed tb  - 

S c (df Error)
3 3"È 2

ii

   where the c  is the Gaussian multiplier from (X X)ii
-w "

 (c) What if the distribution of Y  is not normal?3

  1) If the departure is small, the distribution is still reasonably symmetric,
then the regression coefficients will be approximately normal and the
effect on confidence intervals and tests of hypothesis will be small.

  2) Even if the departure from normality is great, the regression coefficients
have a property called asymptotic normality, such that under most
conditions the the distribution approaches normality as the sample size
increases.

Later we will also discuss transformations which will “normalize" the data, aiding
in meeting this assumption.
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Variance of E(Y )  for the simple linear model3

   Y  = b  + b X^
3 ! " 3

Sampling Distribution of Ŷ3

as with the variances of 's, Y   is a linear combination of the Y  and is normal^"3 3 3

   E(Y ) = E(Y )^
3 3

   Var(Y ) =      +  ^
3




52 1
n

(X X)
_

(X X)
_ 3

3

2

2D

In practice  would be estimated by MSE.52

Note that the variance for Y   is very similar to the variance of b .  This is because^
3 !

b  is a special case of Y  where X =0.^
! 3 3

Also note that the value of the numerator of the second term will increase as the
distance between X and X  increases.  This is because the regression line is–

3

most stable at X, and uncertainty increases as we get farther from X.– –

 Sampling Distribution of Y   E(Y )^

s
3 3

3



Ŷ

as with the other normally distributed statistics examined, this will follow students
t distribution with n-2 degrees of freedom.

The t distribution can be used either for testing an hypothesis about Y  or for^
3

placing a confidence interval on Y .^
3
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Example : From  examplevial breakage regressed on number of airline transfers

 Place a confidence interval on the regression line for the amount of breakage for 3
transfers.

  s  = MSE   +   = 2.2   +    =2
Ŷ

1 1
n 10

(X X) (3 1)
_

(X X)
_

203

3

3    
 

2 2

2 210
10

D

     2.2   +    = 2.2*  = 1.1 1 4 5
10 10 10

  s   1.1  1.0488
Ŷ3

œ œÈ
 since t   2.306, then!

# ß ) .0  œ

  P(Y t  s   E(Y)  Y t  s  )   1-^ ^ ^
X=3 X=3Y Y^ ^ Ÿ Ÿ  œ" ß8# " ß8#! !

# #3 3
!

  P(22.2 2.306*1.0488  E(Y)  22.2 2.306*1.0488)   1-^ Ÿ Ÿ  œ !

  P(19.781  E(Y)  24.619)   0.95^Ÿ Ÿ œ

Check this against the SAS output


