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Using F testsinstead of t-tests

We can aso test the hypothesis Hj: 6, = 0 versusH;:3; # 0 with an F test.

F — M SRegression
T MSError

Thistest is mathematically identical to the previous test of H:3;=0 done with the
t-test (see demonstration in text, which only demonstrates that F=t> for
Hy:61=0). The probabilities are identical.

More generally, the first column in the F tables (F; 4., 4f) is equivalent to the
square of t.
e
tﬁdf e = Fiydfa

Text mentions that t-test has the advantage that it can test one-tailed hypotheses,
while the F cannot.

Also, the t readily tests hypotheses other than 3; = 0. This can also be done with
anon-central F test, but thisis more difficult.

SAS has atest statement in PROC REG which produces an F value for testing
values other than O, but you should know that:

1) the t-test you would do is the same, and

2) The SAStest isatwo tailed test. Thet-test can be either one or two-
tailed

3) The P value (P>F) given by SASfor the F value from the “TEST"
statement is exactly the same as it would be for the t-test.



EXST7034 - Regression Techniques Page 2

Expected Mean Squares for Regression
Recall from ANOVA (simple CRD, balanced) that
E(MSE) = o2
E(MSTreatments) = 02 + no?

where o2 isthe residual variance, o2 is the treatment variance and n is the
number of replicatesin each treatment

and the quantity that we wanted to test was o2
o2 + no?
ThetestusedwasF = —5—
We can see that
1) Fwill be1if 02 = 0. Thiswould be the null hypothesis
2) Power (the ability to detect a difference which exists) increases as we increase
n (sample size) or o2 (the treatment differences) or as we reduce o2 (the
random error term).
Likewise for regression,
E(MSE) = o2 (thisisdeviations from regression)

E(MSRegression) = 02 + #25(X; — X)?

o2 253 (X, —X)?
Thetest usedwasF = ZFA=Xi=X)

a

1) Fwill belif 5, = 0. Thiswould be the null hypothesis. Also, since j;
Is squared, thiswill be atwo tailed test. For onetailed tests use the t-
test.

2) Power (the ability to detect a difference which exists) increases as we
increase 3; (regression coefficient) or 3(X; — X)? (the corrected SS of
X;) or aswe reduce o2 (the random error term).
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Note that power increases as X(X; — X)? increases, this occurs as we

a) increase the distance from X; to X. (Wereis best place to put X;?)

Y .Y

Xi X|

but only if we know that it isastraight line
b) increase n, since more squared differences are added X (X; — X)?

Also note that the term 32X(X; — X)? will be positive since 3; is squared and the
SSX; will be positive. Therefore, thistest is onetailed.



EXST7034 - Regression Techniques Page 4

EXAMPLE: Using SASto test hypotheses about 5, and 3;

EXST7034 - EXAMPLE 1
Program St at enent s

R Rk b b S b Sk S b S b b S b Sk b b S b S I R R R b S b b b S b S b S b b S b b b S b S S R Ak b
l

*** EXST7034 Exanple 1 using PC SAS FER
*** Problemfrom Neter, Wasserman & Kuttner 1989, 22.19 *x k-

*************************************************************;
OPTI ONS LS=80 PS=61 NOCENTER NODATE NONUMBER,
DATA ONE; | NFI LE CARDS M SSOVER;
TI TLE1L ' EXST7034 - EXAMPLE 1';
| NPUT X Y;
CARDS;
raw data here

PROC SORT; BY XY,
PRCC PRINT; TITLE2 'Raw Data Listing';
PROC REG TI TLE2 ' Regressi on Model s done wth SAS REG
procedure';
MXDEL Y =X/ XPX1 P CLM TEST X = 5; RUN,

Model : MODEL1
Model Crossproducts X'X XY Y'Y

X'X | NTERCEP X Y
| NTERCEP 10 10 142
X 10 20 182
Y 142 182 2194
X'X I nverse, Paraneter Estimates, and SSE

| NTERCEP X Y
| NTERCEP 0.2 -0.1 10. 2
X -0.1 0.1 4
Y 10. 2 4 17.6
EXST7034 - EXAWPLE 1
Regr essi on Model s done with SAS REG procedure
Dependent Variable: Y
Anal ysi s of Variance

Sum of Mean
Sour ce DF Squar es Squar e F Val ue Pr ob>F
Model 1 160. 00000 160. 00000 72.727 0. 0001
Error 8 17. 60000 2.20000
C Tot al 9 177. 60000
Root MSE 1.48324 R- squar e 0. 9009
Dep Mean 14. 20000 Adj R-sq 0. 8885

C W 10. 44535
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Par anet er Esti mat es

Par anet er St andard T for HO:
Vari able DF Estimate Error Par anmet er =0 Prob > | T|
| NTERCEP 1 10. 200000 0. 66332496 15. 377 0. 0001
X 1 4. 000000 0. 46904158 8.528 0. 0001

Note: 8.528% = 72.72678

Output from the PROC REG “TEST" option for “TEST X =5;"
Dependent Variable: Y

Numer at or: 10. 0000 DF: 1 F val ue: 4. 5455
Denom nat or: 2.2 DF: 8 Pr ob>F: 0. 0656
Notes:

1) t test of parameter estimate (= 8.528) is equal to the square root of the F test of
themodel. F = 72.727, \ﬂ: =/ 72.727 = 8.529. These arethe same
test.

2) The value for the standard error of b, is

_ 5° _ MSE _ 22 _ _
Var(b;) = n[Ein- M} T SXXP T o —0.22—§1

i

S, = 1/0.22 = 0.46904158

Which is also equal to the square root of MSE* c;; from the (X'X)™! matrix, where
MSE=22andc;; = 0.1.

3) The value for the standard error of by is

Y X202 YX2MSE 20%2.2
Var(by) = —2Xfe? = IXIMSE _ 2022 _ gy
n[Ex2- <zxni>2} NS (X;-X)2 1010

S, = V044 = 0.66332496

4) The TEST option was used to test the hypothesis that Hy: 5;=5. The
aternative would be the two tailed alternative that H,: 5, # 5.

The option produced the results: F = 4.5455, P(>F) = 0.0656
Which should be the square of t, ort = /F = 2.132.

t= Oi—F) _ b5 _ 4.0-5 _

S, S, 046904158 = 2132

1
0.46904158
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EXST7034 - EXAMPLE 1 : Vial breakage regressed on number of airline transfers.

Example of confidence limits for the regression line at various values of X;. A
missing value was included with an X value of 4.
Regression Models done with SAS REG procedure

Dep Var Pr edi ct Std Err  Lower95% Upper 95%

Qbs Y Val ue Pr edi ct Mean Mean Resi dual
1 8. 0000 10. 2000 0. 663 8.6704 11. 7296 -2.2000
2 9. 0000 10. 2000 0. 663 8.6704 11. 7296 -1. 2000
3 11. 0000 10. 2000 0. 663 8.6704 11. 7296 0. 8000
4 12. 0000 10. 2000 0. 663 8.6704 11. 7296 1. 8000
5 13. 0000 14. 2000 0. 469 13.1184 15. 2816 -1. 2000
6 15. 0000 14. 2000 0. 469 13.1184 15. 2816 0. 8000
7 16. 0000 14. 2000 0. 469 13.1184 15. 2816 1. 8000
8 17. 0000 18. 2000 0. 663 16. 6704 19. 7296 -1. 2000
9 19. 0000 18. 2000 0. 663 16. 6704 19. 7296 0. 8000
10 22. 0000 22. 2000 1. 049 19. 7814 24. 6186 - 0. 2000
11 26. 2000 1. 483 22. 7796 29. 6204
Sum of Resi dual s -1.59872E- 14
Sum of Squared Resi dual s 17. 6000
Predi cted Resid SS (Press) 25. 8529

Example of confidence limits for a new point at various values of X;. A missing
value was included with an X value of 4.

Regression Models done with SAS REG procedure

Dep Var Pr edi ct Std Err  Lower95% Upper 95%

Cbs Y Val ue Pr edi ct Pr edi ct Predi ct Residual
1 8. 0000 10. 2000 0. 663 6. 4532 13. 9468 -2. 2000
2 9. 0000 10. 2000 0. 663 6. 4532 13. 9468 -1. 2000
3 11. 0000 10. 2000 0. 663 6. 4532 13. 9468 0. 8000
4 12. 0000 10. 2000 0. 663 6. 4532 13. 9468 1. 8000
5 13. 0000 14. 2000 0. 469 10. 6127 17. 7873 -1. 2000
6 15. 0000 14. 2000 0. 469 10. 6127 17. 7873 0. 8000
7 16. 0000 14. 2000 0. 469 10. 6127 17. 7873 1. 8000
8 17. 0000 18. 2000 0. 663 14. 4532 21. 9468 -1. 2000
9 19. 0000 18. 2000 0. 663 14. 4532 21. 9468 0. 8000
10 22. 0000 22. 2000 1.049 18. 0109 26. 3891 -0. 2000
11 26. 2000 1.483 21. 3628 31.0372
Sum of Resi dual s -1.59872E- 14
Sum of Squared Resi dual s 17. 6000

Predi cted Resid SS (Press) 25. 8529
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Summary of the results due to the assumptions made
(@ S = MSE then E(S?) = o2
(b) Distributions
(1) b; isdistributed N[3, o2(X'X)]

We do not assume Cov(3;,5;) = O aswiththe Y's. More later.

(2) Y29 jsdistributed Fg msreg, df MsE)

For multiple regression thisis ajoint test, so the distribution has a noncentrality
parameter which is zero when 3, (5, ... Ok equals zero. (When Hg is
true)

(3) Inparticular

'\O/?il is distributed t(f Error)

where the ¢;; isthe Gaussian multiplier from (X’X)!

(c) What if the distribution of Y; is not normal?

1) If the departure is small, the distribution is still reasonably symmetric,
then the regression coefficients will be approximately normal and the
effect on confidence intervals and tests of hypothesis will be small.

2) Even if the departure from normality is great, the regression coefficients
have a property called asymptotic normality, such that under most
conditions the the distribution approaches normality as the sample size
INcreases.

Later we will also discuss transformations which will “normalize” the data, aiding
In meeting this assumption.
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Variance of E(Y;) for the ssmple linear model

N\

Y; =by + b X;
Sampling Distribution of \?2

as with the variances of 3;'s, \?Z Isalinear combination of the Y; and is normal
N
ECY;) = E(Y,)
N\ )2
Va(Y;)= o° (1 + K )

n 3(X;—X)?

In practice o2 would be estimated by MSE.

Note that the variance for \?Z- Isvery similar to the variance of by. Thisis because
N\
b, isaspecial case of Y; where X;=0.

Also note that the value of the numerator of the second term will increase as the
distance between X and X; increases. Thisis because theregression lineis
most stable at X, and uncertainty increases as we get farther from X.

Sampling Distribution of 9, SYE(Y)

3

as with the other normally distributed statistics examined, thiswill follow students
t distribution with n-2 degrees of freedom.

The t distribution can be used either for testing an hypothesis about \?2 or for
placing a confidence interval on \?2
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Example : From vial breakage regressed on number of airline transfers example

Place a confidence interval on the regression line for the amount of breakage for 3
transfers.

— 1 (Xi—=X)? — 1 (3-1)2 —
s, = MSE (ﬁ ¥ zmv) =22 (E ¥ 2011°§> -

2.2 (1—10 + %) =22¢2>=11
s = V11 = 1.0488
sincet%,gdf = 2.306, then
N\ N\ N\
P(Yx=3 —ti-gn28 < E(Y) < Yxss3+tign28) = l-o
P(22.2 — 2.306*1.0488 < E(Q) < 2224 2.306%1.0488) = l-«

P(19.781 < E(Y) < 24619 = 0.95

Check this against the SAS output



