```
proc GLM data=Satisfaction; TITLE2 'Analysis with GLM';
    MODEL Y=X2 X1 X3;
RUN;
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X1 X2 X3 / vif stb PCORR1 PCORR2 SCORR1 SCORR2;
    TEST X2=X3=0;
    TEST X1=-1, X2=0;
RUN;
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X1 X2 X3;
    restrict X1=-1, X2=0;
RUN;
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X1 / vif stb PCORR1 PCORR2 SCORR1 SCORR2;
RUN;
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X1 X2 / vif stb PCORR1 PCORR2 SCORR1 SCORR2;
RUN;
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X2 / vif stb PCORR1 PCORR2 SCORR1 SCORR2;
RUN;
```

Question 7.5a from KNNL: The model was fitted with GLM. The appropriate SS are given by the TYPE I SS with the model fitted as "Y=X2 X1 X3;"
Dependent Variable: Y

Source	Variable:	DF	Sum of Squares	Mean Square	F	$\begin{aligned} & \text { Value } \\ & 30.05 \end{aligned}$	$\begin{aligned} & \text { Pr > F } \\ & <.0001 \end{aligned}$
Model		3	9120.46367	3040.15456			
Error		42	4248.84068	101.16287			
Corrected	Total	45 1	13369.30435				
R-Square	Coeff Var	Root MSE	E Y				
0.682194	16.33711	10.05798	8 61.56				
Source		DF	Type I SS	Mean Square	F	Value	$\mathrm{Pr}>\mathrm{F}$
X2		14	4860.260003	4860.260003		48.04	<. 0001
X1		13	3896.044142	3896.044142		38.51	<. 0001
X3		1	364.159521	364.159521		3.60	0.0647

Question 7.5b from KNNL: Using the output from question 7.5a above, the test shows that after adjusting for X2 and X1 (order not important to testing X3 as long as it is last), X3 has an F value of only 3.60 , which is not significant at the 0.025 level specified by the problem. It can be dropped.

Question 7.6 from KNNL: The model fitted with REG was presented previously. This hypothesis was tested with a test statement: TEST $\mathrm{X} 2=\mathrm{X} 3=0$;. The test results indicate that the two variables, X 2 and X 3 should both be retained in the model ($\mathrm{P}=0.0222$).

The REG Procedure

Model: MODEL1	Test 1 Results forDependent Mean	Variable Y			
	DF	Square	F Value	Pr $>$ F	
r	2	422.53741	4.18	0.0222	
tor	42	101.16287			

Question 7.9 from KNNL: Question 7.6 from KNNL: The full model was fitted with GLM was presented above. A reduced model with the restrictions model $X_{1}=-1$ and $X_{2}=0$ can be fitted with the following statements.

```
proc REG data=Satisfaction; TITLE2 'Analysis with REG';
    MODEL Y=X1 X2 X3;
    restrict X1=-1, X2=0;
RUN;
```

The results of this fit are given below. This is a reduced model, and the difference from the full model (GLM above) can be tested with the general linear hypothesis test. Note the values of the regressions coefficients showing the restrictions.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	8941.64940	8941.64940	88.86	<. 0001
Error	44	4427.65495	100.62852		
Corrected Total	45	13369			
Parameter Estimates					
Variable DF	Estimate	Error	t Value	$\operatorname{Pr}>\|t\|$	
Intercept 1	146.02609	11.52015	12.68	<. 0001	
X1 1	-1. 00000	0	-Infty	<. 0001	
X2 1	8.9013E-17	0	Infty	$<.0001$	
X3 1	-20.14449	4.99564	-4.03	0.0002	
RESTRICT -1	-484.63360	493.22037	-0.98	$0.3315 *$	
RESTRICT -1	-249.28359	215.34660	-1.16	$0.2516 *$	
* Probability com	ed using b	a distributio			

This hypothesis can also be tested with a test statement on the full model in PROC REG by "TEST X1=-1, X2=0;". This test had been done in a previous assignment as a supplemental part of question 6.15 c. The test results were:

| Test 2 Results for | DependentVariable

 Mean
 Source\quad DF | Square | F Value | Pr > F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Numerator | 2 | 89.40713 | 0.88 | 0.4208 |
| Denominator | 42 | 101.16287 | | |

The hypotheses were Ho: $\beta 1=-1$ and $\beta 2=0$. The decision rule is simply $\mathrm{P} \leq 0.025$. Conclusion: Cannot reject Ho.

Question 7.14a from KNNL: The model was fitted with REG, and the PCORR1, PCORR2, SCORR1 and SCORR2 options were requested (among other things). The results were.

Question 7.14b from KNNL: The model was fitted as above. The only new model needed was the first one (Y on X2).

Concerning problem 7.14a\&b) NOTE that SAS provides various types of R, but no single regression model provides all of the requested r1, r1.2, and r1.2,3 (since each requested value represents a different model). The values provided by SAS are;

1) Semi-partial r (TYPE I) = SSTYPE I / SSTotal
2) Partial r (TYPE I) = SSTYPE I / (*SSTYPE I SSE)
3) Semi-partial r (TYPE II) = SSTYPE II / SSTotal
4) Partial r (TYPE II) = SSTYPE II / (SSTYPE II SSE); the most common type

* Indicates cumulative for equal and higher rank. (e.g. SSTYPE I for X1=SS1X1+SS1X2+SS1X3)

Note that for this example the variable X1 $(\mathbf{0 . 6 1 8 9 8}, \mathbf{0 . 4 5 7 8 7}, \mathbf{0 . 4 0 2 1 1})$ was relatively stable and unaffected by additional variables added to the model. The variable X2 ($\mathbf{0 . 3 6 3 5 4}, \mathbf{0 . 0 9 4 4 1}, \mathbf{0 . 0 1 8 8 6}$) was greatly influenced.
4) Modified Question 7.18a from KNNL: The standardized regression coefficients are given below. The first variable is several times more important to the model than the other two. The second and third variables are of similar importance to the model.

Parameter Estimates

	Parameter	Standard		Standardized		
Variable	DF	Estimate	Error	t Value	Pr $>\mid \mathrm{t\mid}$	Estimate
Intercept	1	158.49125	18.12589	8.74	$<.0001$	0
X1	1	-1.14161	0.21480	-5.31	$<.0001$	$\mathbf{- 0 . 5 9 0 6 7}$
X2	1	-0.44200	0.49197	-0.90	0.3741	$\mathbf{- 0 . 1 1 0 6 1}$
X3	1	-13.47016	7.09966	-1.90	0.0647	$\mathbf{- 0 . 2 3 3 9 3}$

5) The variance inflation factors are given below. Although no single value is particularly large (>10), the mean (1.881533) is below 2, so there is no cause concern.

		Squared Semi-partial	Squared Partial	Squared Semi-partial		Squared Partial	Variance
Variable	DF	Corr Type I	Corr Type I	Corr Type II	Corr	Type II	Inflation
Intercept	1	.	-	.		.	0
X1	1	0.61898	0.61898	0.21374		0.40211	1.63230
X2	1	0.03597	0.09441	0.00611		0.01886	2.00324
X3	1	0.02724	0.07894	0.02724		0.07894	2.00906

