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OBJECTIVES 
         Logistic Regression is a type of predictive model that can be used when the dependent 
variable is a categorical variable with two categories – for example male/female, fail/pass, 
live/die, has disease/doesn’t have disease, wins race/doesn’t win, etc. Thus the dependent 
variable can take the value 1 with a probability of success (p), or the value 0 with a probability of 
failure (1-p). The independent or predictor variable can take any form (continuous, dichotomous 
and/or dummy variable with more than two categories). That is, logistic regression makes no 
assumption about the distribution of the independent variables. They do not have to be normally 
distributed, linearly related or of equal variance within each group.  

         The relationship between the independent and dependent variables is not a linear function 
as shown below: 

                        p = e(α+β1X1+ β2X2 +…+βiXi)/{1+ e(α+β1X1+ β2X2 +…+βiXi)} 

where  = the constant of the equation and,  = the coefficient of the independent variables. The 
computed value, p, is a probability in the range of 0 to 1. 

          Much of the interpretation of logistic regression model centers on the ratio. 

                              Odds = p/(1-p) = e(α+β1X1+ β2X2 +…+βiXi) 

where Odds can take on values between zero and infinity. 

           The logarithm of odds, logit, results in a linear model, the logistic regression:                       

                 Logit = log (odds) = log{p/(1-p)}= α+β1X1+ β2X2 +…+βiXi 

           Interpretation of the parameters differs in logistic regression, as parameter estimates need 
to be back-transformed to be meaningful. To estimate a predicted probability, you must calculate 
α+β1X1+ β2X2 +…+βiXi at the desired Xis to get the predicted logit first, and then exponentiate it 
to get the predicted Odds that can be back-transformed as: 

                    The predicted probability = predicted odds/(1+predicted odds) 

            The important tests generated by logistic regression are the “Tests of Global Null 
Hypothesis: Beta=0” and the “Analysis of Maximum Likelihood Estimates”. The “Analysis of 
Maximum Likelihood Estimates” uses Wald statistics to test the null hypothesis H0 that the 



associated parameter estimates are not equal zero. The “Tests of Global Null Hypothesis” are 
essentially tests of model significance, much like the model F-test for linear regression. 
Typically, the best test to use is the likelihood ratio test, which uses a Chi-square test of 
significance to test whether the slope parameter βs are significant different from zero. If this test 
is not significant, it indicates that the logistic regression is not an appropriate model for the 
experimental data. 

LABORATORY INSTRUCTIONS 
  
Housekeeping Statements 
 
dm 'log; clear; output; clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
title1 'EXST7015 lab 9, Name, Section#'; 
ods rtf  file = 'c:/temp/lab9.rtf'; 
ods html file = 'c:/temp/lab9.html'; 
Data set 
 
         The data set to be used is taken from a collection of data sets included in the textbook An 
Introduction to Categorical Data Analysis, written by Alan Agresti (John Wiley & Sons, Inc., New York, 
NY, 1996).  The data consists only of data for the response (dependent) variable (a binary response of 
whether or not thermal distress was detected in a given O-ring seal on a space shuttle), and the 
explanatory (independent) variable (outside air temperature at time of shuttle launch), for a randomly and 
independently selected set of 23 shuttle launches. Two additional observations have been included in this 
dataset for purposes of estimating predicted responses to given values of the independent variable.  
 
Fitting Logistic Model by Using PROC LOGISTIC  
 
DATA one; 
   input temp distress @@; 
   cards; 
66 0  70 1  69 0  68 0  67 0 
72 0  73 0  70 0  57 1  63 1 
70 1  78 0  67 0  53 1  67 0 
75 0  70 0  81 0  76 0  79 0 
75 1  76 0  58 1  66 .   35 . 
; 
proc print data=one; 
run; 
proc logistic data=one descending; 
   Title2 'Logistic analysis of shuttle data'; 
   model distress = temp / CLPARM=wald CLODDS=wald alpha=0.01; 
   output out=two p=predicted; 
run; 
proc print data=two;run; 
proc sort;  by temp;  run; 
proc gplot data=two; 
Title3 'Plot of predicted prob vs. temp'; 
   plot predicted*temp; 
   symbol c=blue i=join v=dot; 
run; 



 
              Descending: Performing the logistic regression relative to “Success” probability, rather 
the “Failure” probability. Since it is desired to estimate the probability of thermal distress, the 
“Success” outcome, for different ambient temperatures, the Descend option is used in this lab. If 
this option is omitted, such that the “Failure” outcome is modeled, the probability of the 
“Success” outcome may still be estimated by solving the odds ratio algebraically. 
 
             CLPARM=wald and CLODDS=wald: Calculating confidence limits for the estimates 
of the model parameters and associated odds ratio. Confidence limits are difficult to calculate 
manually, so it is easy to specify the option to do so automatically. Both sets of confidence limits 
are calculated using a Wald test statistics, which essentially is a Z-test (calculated by parameter 
estimate divided by the standard error, Z=β/SE) 
 
LAB ASSIGNMENT 

1. Write the logistic regression equation to model the odds of distress as a function of temperature.  

2. Perform a logistic regression, and report the regression parameters and their 99% confidence 
intervals.  

3. Does temperature affect the odds of distress? Explain the reason for your answer.  

4. What is the probability of distress at 66 degrees and at 35 degrees?  

5. Plot the probability curve and describe it.  

 

 


