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Lab 08: Polynomial Regression 
 

 
OBJECTIVES 
 
Polynomial regression is a statistical modeling technique to fit the curvilinear data that either 
shows a maximum or a minimum in the curve, or that could show a max or min if you 
extrapolated the curve beyond your data. The ability to determine a minimum or maximum point 
based on the experimental data is a useful application of polynomials. The simple polynomial 
regressions are multiple regression that use power terms of the independent variable (Xi) with the 
form of Y=β0 + β1 Xi + β2 Xi

2 +…+ βk Xi
k + ei. Notice the subtle difference from multiple linear 

regression model, here the numbers 2, 3, …,k represent the powers of the same variable. For data 
that are shaped like a parabola, you probably won't need more than a quadratic model. If the 
curve trends up again at one end, you'll need a cubic model. Curves with multiple kinks need 
even higher-order terms. It is obvious that multi collinearity is unavoidable issue in Polynomial 
regression because the model terms are related to each other. Use of sequentially adjusted type 
I SS is the solution as presented as the following. 
 
Several hypotheses are tested during polynomial regression which is fitted successively starting 
with the liner term (a first order polynomial). The first null hypothesis, then, is that a quadratic 
equation does not fit the data significantly better than a linear equation; the next null hypothesis 
may be that a cubic equation does not fit the data significantly better than a quadratic equation, 
and so on. Therefore, the sequentially adjusted type I SS should be used when one attempts to 
test whether a polynomial model is as good as the one with a higher order term. If a particular 
higher order term is significant, all terms of lower order should be assumed significant and 
retained in the regression model. There is also a null hypothesis for each equation that says that it 
does not fit the data significantly better than a horizontal line; in other words, that there is no 
relationship between the X and Y variables.  
 
It should be noticed that the fully adjusted regression coefficients are still used to fit the 
polynomial regression, which usually leads to no practical explanation of regression coefficients. 
Further, extrapolation outside the range of the fitted experimental data is untenable, and should 
not be attempted. This is because the shape of the regression function, as predicted by the model, 
may not at all accurately represent reality outside the range of the experimental data. 
 
The assumptions for performing polynomial regression are similar to those of ordinary 
regression. The assumptions of normality and homogeneity can be evaluated by customary 
diagnostic technique (Shapiro-Wilk, residual plots). Residual and influence statistics still work 
with these regression models.  
 
 
 
 



LABORATORY INSTRUCTIONS 
  
Housekeeping Statements 
 
dm 'log; clear; output; clear'; 
options nodate nocenter pageno = 1 ls=78 ps=53; 
title1 'EXST7015 lab 8, Name, Section#'; 
ods rtf  file = 'c:/temp/lab8.rtf'; 
ods html file = 'c:/temp/lab8.html'; 
 
Data Set:  
The data set that we use contains the per capita state and local public expenditures and associated 
state demographic and economic characteristics for 48 states during the year of 1960. Detailed 
information can be found at http://lib.stat.cmu.edu/DASL/Datafiles/pubexpendat.html.  
The variables in the dataset are:  
EX: Per capita state and local public expenditures ($)  
ECAB: Economic ability index, in which income, retail sales, and the value of output 
(manufactures, mineral, and agricultural) per capita are equally weighted.  
MET: Percentage of population living in standard metropolitan areas  
GROW: Percent change in population, 1950-1960  
YOUNG: Percent of population aged 5-19 years  
OLD: Percent of population over 65 years of age  
WEST: Western state (1) or not (0)  
 
In this lab, we will use MET, Percentage of population living in standard metropolitan area, as 
the independent variable and the expenditure (EX) as the dependent variable. Other variables are 
dropped from the dataset.  
 
data expenditure;  
input ex ecab met grow young old west state$; 
drop ecab grow young old west; 
cards; 
256 85.5 19.7 6.9  29.6 11.0 0 ME 
275 94.3 17.7 14.7 26.4 11.2 0 NH 
327 87.0 0.0  3.7  28.5 11.2 0 VT 
297 107.5 85.2 10.2 25.1 11.1 0 MA 
256 94.9 86.2 1.0  25.3 10.4 0 RI 
312 121.6 77.6 25.4 25.2 9.6  0 CT 
374 111.5 85.5 12.9 24.0 10.1 0 NY 
257 117.9 78.9 25.5 24.8 9.2  0 NJ 
257 103.1 77.9 7.8  25.7 10.0 0 PA 
336 116.1 68.8 39.9 26.4 8.0  0 DE 
269 93.4 78.2 31.1 27.5 7.3  0 MD 
213 77.2 50.9 21.9 28.8 7.3  0 VA 
308 108.4 73.1 22.2 28.0 8.2  0 MI 
273 111.8 69.5 21.8 26.9 9.2  0 OH 
256 110.8 48.1 18.3 27.5 9.6  0 IN 
287 120.9 76.9 15.5 25.4 9.7  0 IL 
290 104.3 46.3 14.9 27.4 10.2 0 WI 
217 85.1 30.9 -7.4 30.0 9.3  0 WV 
198 76.8 34.1 0.3  29.4 9.6  0 KY 



217 75.1 45.8 8.1  28.9 8.7  0 TE 
195 78.7 24.6 12.4 30.8 6.9  0 NC 
183 65.2 32.2 12.9 32.9 6.3  0 SC 
222 73.0 46.0 14.4 30.0 7.4  0 GA 
283 80.9 65.6 77.2 25.5 11.2 0 FL 
217 69.4 45.6 7.0  30.5 8.0  1 AL 
231 57.4 8.6  0.5  32.1 8.7  1 MS 
329 95.7 51.3 14.4 28.8 10.4 1 MN 
294 100.2 33.2 5.3  27.3 11.9 1 IA 
232 99.1 57.9 9.8  25.6 11.7 1 MO 
369 93.4 10.6 2.9  30.2 9.3  1 ND 
302 88.2 12.7 4.6  28.9 10.5 1 SD 
269 99.1 37.6 6.8  26.6 11.6 1 NB 
291 102.2 37.4 13.7 26.8 11.0 1 KS 
323 86.0 5.0  21.9 30.3 7.4  1 LA 
198 68.6 19.1 -6.2 29.4 10.9 1 AR 
282 84.9 43.9 6.4  27.4 10.7 1 OK 
246 98.8 63.4 24.1 28.8 7.8  1 TX 
309 86.2 27.6 39.4 31.5 5.4  1 NM 
309 90.2 71.4 74.3 29.7 6.9  1 AZ 
334 97.6 22.6 13.4 28.9 9.7  1 MT 
284 93.9 0.0  13.3 30.7 8.7  1 ID 
454 125.8 0.0  13.7 29.1 7.8  1 WY 
344 98.0 6.8  31.5 28.0 9.0  1 CO 
307 92.5 67.5 28.7 31.9 6.7  1 UT 
333 100.4 63.1 19.9 27.5 9.8  1 WA 
343 98.0 50.4 15.7 27.7 10.4 1 OR 
421 205.0 74.2 77.8 25.6 6.4  1 NV 
380 112.6 86.5 48.5 26.2 8.8  1 CA 
; 
Proc print data=expenditure; 
run; 
proc gplot data=expenditure; 
plot ex*met; 
title3 "Plot of raw data"; 
symbol1 c=red v=dot; 
run; 
 
Proc gplot: It can produce high-resolution graphic plot, and improve the appearance of the plot 
by defining plot symbols. C=red specifies the color of the symbol. V=dot would place a dot for 
each data point.  
 
Take time to exam the plot, can you spot a maximum or minimum point? 
 
Fitting a Polynomial Regression Model with a cubic term of MET: 
 
proc glm data=expenditure; 
title2 "Polynomial regression model with cubic term"; 
model ex = met met*met met*met*met / ss1 ss2; 
output out=outdata1 p=yhat1 r=resid1; 
run; 
 
proc plot data=outdata1; 



title3 'residual plot'; 
plot resid1*yhat1; 
run; 
 
proc univariate data=outdata1 normal; 
title3 'univariate procedure on residuals'; 
var resid1; 
run; 
 
Notice that PROC GLM is used for polynomial regression rather than PROC REG. While they 
are essentially the same for the analysis, there is one difference. When using PROC GLM, one 
can enter the higher order terms directly at the model statement, does not need to create new 
variables in the data step for each of them, which on the contrary has to be done before PROC 
REG works properly.  
 
Carefully exam the F-tests of parameter estimates. Keep in mind that the sequentially adjusted 
type I sums of squares are used for polynomial regression. 
 
Fitting a Polynomial Regression Model with a Quadratic term of MET: 
 
proc glm data=expenditure; 
title2 "Polynomial regression model with cubic term"; 
model ex = met met*met / ss1 ; 
output out=outdata2 p=yhat2 r=resid2; 
run; 
 
proc plot data=outdata2; 
title2 'residual plot'; 
plot resid2*yhat2; 
run; 
 
proc univariate data=outdata2 normal; 
title3 'univariate procedure on residuals'; 
var resid2; 
run; 
 
ods rtf close; 
run; 
quit; 
 
 
 
 
 
 
 
 
 
 
 
 



LAB ASSIGNMENT 
 

1. Describe the trend in the scatter plot of the raw data: what is the relationship between 

variables EX and MET?  

2. Fit a polynomial regression model with cubic term of MET. When you decide whether 

the cubic term and quadratic term should be included in the model, do you use the Type I 

SS or Type II SS? Why?  

3. Is the cubic effect significant? How about quadratic and linear effects?  

4. Based on your answers to the above questions and the SAS output, which polynomial 

model do you consider the best? Write down the polynomial model with the estimated 

coefficient values. Do you keep the linear term in the model? Why?  

5. Now assume that there is a state where 100 percent of its residents live in standard 

metropolitan areas. Use the best model to predict the per capita public expenditure of this 

state. Is there any problem in doing so?  


