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A.  MATRIX STRUCTURE AND NOTATION  
1) A matrix is a rectangular arrangement of numbers.  The matrix is usually denoted by a capital 
letter. 

  A = 
1 3
7 9
L
NM
O
QP    D = 

4 2 4
1 6 0
3 0 5
2 3 0

L

N

MMMM

O

Q

PPPP
 

2) The dimensions of a matrix are given by the number of rows and columns in the matrix (i.e. 
the dimensions are r by c). For the matrices above, 

   A  is  2 by 2  

   D  is  4 by 3 

3) The individual elements of a matrix can be referred to by specifying the row and column in 
which it occurs. Lower case numbers are used to represent individual elements, and should 
match the upper case letter used to denote matrix. For example, individual elements from 
matrices A and D above can be referred to as, 

   a11 =  1  

   a21  =  7  

   d22  =  6  

   d12  =  2  

B.  TYPES OF MATRICES 
1) Square matrix - the number of rows and columns are equal.  Matrix A above is a square matrix 
(2 by 2), matrix D is not (4 by 3).  A symmetric matrix is an important variation of the square 
matrix.  In a symmetric matrix, the value in position “ij" equals the value in position “ji" (where i 
≠ j).  For example, if c31 = 5 then c13 is also 5.   

2) Scalar - a single number can be thought of as a 1 by 1 matrix and is called a scalar. 

3) Vector - a single column or single row of numbers is called a vector.  The dimensions of a row 
vector are (1 by c), where "c" is the number of columns, and the dimensions of a column vector 
(r by 1), where "r" is the number of rows. 

4) Identity matrix - this special square matrix consists of all ones on the main diagonal, or 
principal diagonal, and zeros in all the off diagonal positions. The following are examples of 
identity matrices, 

  E  =  
1 0 0
0 1 0
0 0 1

L

N
MMM

O

Q
PPP

  F  =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

L

N

MMMM

O

Q

PPPP
 

The diagonal matrix is a generalization of the identity matrix. A diagonal matrix can have any 
value on the main diagonal, but also has zeros in the off diagonal positions. 



EXST7015 Matrix Algebra Geaghan 
Matrix (Part 1)  Introduction & Simple Linear Regression Page 2 

06d-MatrixAlgebraIntro.doc 

C. MATRIX TRANSPOSE 
The transpose of a matrix consists of a new matrix such that the rows of the original matrix 
become the columns of the transpose matrix.  The transpose matrix is denoted with the same 
letter as the original matrix followed by a prime (e.g. the transpose of X is X).  

  D = 

4 2 4
1 6 0
3 0 5
2 3 0

L

N

MMMM

O

Q

PPPP
   D  =  

4 1 3 2
2 6 0 3
4 0 5 0

L

N
MMM

O

Q
PPP
  

D.  MATRIX ADDITION AND SUBTRACTION  
Matrices to be added or subtracted must be of the same dimensions.  Each element of the first 
matrix, (a) is added (or subtracted) from the corresponding element of the second matrix, (b). 

 A = 
1 2
3 4
9 0

−L

N
MMM

O

Q
PPP
 B = 

1 4
1 4
4 4−

L

N
MMM

O

Q
PPP
 A+B = 

1 1 2 4
3 1 4 4
9 4 0 4

+ − +
+ +
− +

L

N
MMM

O

Q
PPP
 = 

2 2
4 8
5 4

L

N
MMM

O

Q
PPP

 

E.  MATRIX MULTIPLICATION 
Multiplication by a scalar - in this type of multiplication each element of the matrix is simply 
multiplied, element by element, by the scalar value. 

 A =  
1 2
3 4
9 0

−L

N
MMM

O

Q
PPP
 B  =  [7] A * B  =  7 * 

1 2
3 4
9 0

−L

N
MMM

O

Q
PPP
= 

7 14
21 28
63 0

−L

N
MMM

O

Q
PPP
    

Element by element multiplication - matrix multiplication is not usually done by matching 
each i,jth element of one matrix with the corresponding ijth element of the second matrix.  This is 
called elementwise multiplication and it is not the normal mode of matrix multiplication and 
should not be used unless specifically requested.    

The standard method of matrix multiplication requires that the number of columns in the first 
matrix equal the number of rows in the second matrix.  If the first matrix is (r by c) and the 
second is (r by c), in order to multiply the matrices, c must equal r. The resulting matrix will 
have the dimensions (r by c).  

Multiplication is accomplished by summing the cross products of each row of the first matrix 
and each column of the second matrix. 

  A  =  
1 2
3 4
9 0

−L

N
MMM

O

Q
PPP
 X  =  

1 2
3 4

−L
NM
O
QP  

Since A is 3 rows by 2 columns, and X is 2 by 2, then the columns of the first matrix equals the 
rows of the second matrix, and the matrices may be multiplied.   

A*X = 
1 2
3 4
9 0

−L

N
MMM

O

Q
PPP
 * 

1 2
3 4

−L
NM
O
QP =  

(1*1) + (-2 *3) (1* -2) + (-2 * 4)
(3*1) + (4 * 3) (3* -2) + (4 * 4)
(9 *1) + (0 * 3) (9 * -2) + (0 * 4)

L

N
MMM

O

Q
PPP

 = 
− −

−

L

N
MMM

O

Q
PPP

5 10
15 10
9 18
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the new dimensions for the product of A * X are, 

 ↓ must be equal  ↓   

(3 x 2) x (2 x 3) 

↑   new dimensions  ↑ 

 

Note that though we can multiply A * X, we could not have done the multiplication the other 
way (i.e. X * A), since the dimensions would not have matched.  That is, we could pre-multiply 
by A, but could not pre-multiply by X.   

F. SIMPLE MATRIX INVERSION (2 by 2 matrix only)  
Matrices are not “divided", but may be inverted.  Instead of “dividing" A by B, one would 
multiply A by the inverse of B.  The inverse of a (2 by 2) matrix is given by, 

  A  =
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

  A–1  =  
( ) ( )

d -b1
-c aa×b - b×c
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

The scalar value resulting from the calculation “(a%d) – (b%c)" is called the determinant. The 
matrix cannot be inverted unless the inverse of the determinant exists (is defined).  It will not 
exist in a case such as the one below since (1+0) is not defined.     

 A  =
1 4
2 8
L
NM
O
QP  A–1  =  1 1

1 8 2 4
1
0Determinant of A

=
× − ×

=a f a f   

This occurs in regression when two variables are linearly related.   

An example of the inversion of a 2 * 2 matrix is given below.   

 B  =
2 3
1 4
L
NM
O
QP B–1  = 1

2 4 1 3
4 3
1 2

1
5

4 3
1 2

0 8 0 6
0 2 0× − ×

−
−
L
NM

O
QP =

−
−
L
NM

O
QP =

−
−
L
NM

O
QPa f a f

. .
. .4

  

Note that a matrix times its inverse (i.e.  B % B–1) results in an identity matrix.  By definition, the 
inverse of a matrix G is a matrix which when multiplied by G produces an identity matrix, or 
G%G–1=I.   

G. SIMPLE LINEAR REGRESSION  
Solving a simple linear regression with matrices requires the same values used for an algebraic 
solution from summation notation formulas.  These are;  

 n , 
n

i
i=1

X∑  , 
n

i
i=1

Y∑  , 
n

2
i

i=1
X∑  , 

n
2

i
i=1

Y∑  , 
n

i i
i=1

X Y∑  

where n is the size of the sample of data. To obtain these values in the matrix form we start with 
the matrix equivalent of the individual values of X and Y, the raw data matrices.   
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  X

X
X
X
X
X
X
X

1

2

3

4

5

6

7

=

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

1
1
1
1
1
1
1

  Y

Y
Y
Y
Y
Y
Y
Y

1

2

3

4

5

6

7

=

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

 

The column of ones is necessary, and represents the intercept. Omitting this column would force 
the regression through the origin. The next step in the calculations is to obtain the X′X, X′Y and 
Y′Y matrices. These calculations provide the sums of squares and cross products. 

 ′ =
L
NM

O
QP

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

X X
X X X X X X X

X
X
X
X
X
X
X

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 1 1 1 1 1

1
1
1
1
1
1
1

 = 
n X

X X

i

i i
2

i

n

i

n

i

n
=

= =

∑

∑ ∑

L

N

MMMM

O

Q

PPPP
1

1 1

 

 ′ =
L
NM

O
QP

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

X Y
X X X X X X X

Y
Y
Y
Y
Y
Y
Y

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 1 1 1 1 1
 = 

Y

X Y

i

i i

i

n

i

n
=

=

∑

∑

L

N

MMMM

O

Q

PPPP
1

1

 

 ′ =

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

Y Y Y Y Y Y Y Y Y

Y
Y
Y
Y
Y
Y
Y

1 2 3 4 5 6 7

1

2

3

4

5

6

7

 

The regression coefficients, b0 and b1, are then given by, B = (X′X)–1X′Y, where 

 ′ =
−

−
−

L
NMM

O
QPP∑ ∑

∑ ∑
∑

X X 1

n X n X

X X
X n

i
2

i

2
i
2

i

id i d i
 

and since  
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  1
Determinant X X

1
n X n X

1
nS1

i
2

i

2
XX′

=
−

=−

∑ ∑a f d i d i
  

where Sxx is the corrected sum of squares of X.   

Then  ′ =

−

−

L

N

MMMM

O

Q

PPPP

∑ ∑

∑
X X

X
nS

X
nS

X
nS

n
nS

i
2

XX

i

XX

i

XX XX

 

and the regression coefficients can be obtained by, 

′ ′ =

−

−

L

N

MMMM

O

Q

PPPP
×
L
NMM

O
QPP

−

∑ ∑

∑
∑
∑

X X X Y

X
nS

X
nS

X
nS

n
nS

Y
X Y

i
2

XX

i

XX

i

XX XX

i

i i

a f 1  = 

X
nS

Y
X

nS
X Y

X
nS

Y n
nS

X Y

i
2

XX
i

i

XX
i i

i

XX
i

XX
i i

∑ ∑ ∑ ∑
∑ ∑ ∑

−

−

L

N

MMMM

O

Q

PPPP
 

  = 

( )

1

i i
i i

2

i2
i

Y-b X
X Y

X Y -
n
X

X -
n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑∑
∑∑

 = 
Y b X

X X Y Y

X X

1

i i

i
2

−
− −

−

L

N
MMM

O

Q
PPP

∑
∑
c hc h
c h

 = 
Y b X

S
S

1

XY

XX

−L

N
MM

O

Q
PP  = 

b
b

0

1

L
NM
O
QP  

The remaining calculations usually needed to complete the compliment of calculations for the 
simple linear regression is the sum of squared deviations or error term.  The matrix formula is 

 SSE  =  Y′Y – B′X′Y  = ΣY2 –  [b0  b1]
Σ
Σ

Y
XY
L
NM
O
QP  

  = ΣY2 –  (b0*ΣY + b1*ΣXY) =    UCSSTotal  –  UCSSReg 

 

These calculations produce the same algebraic equations for b0, b1, and SSE that are given in 
most statistics texts.  The advantage of using the matrix version of the formulas is that the matrix 
equations given above will work equally well for multiple regression with two or more 
independent variables. 

The ANOVA table calculated with matrix formulas is  

 Uncorrected   Corrected  

Source   d.f.     Sum of Squares d.f. Sum of Squares

Regression     2    B′X′Y 1 B′X′Y – CF 

Error n–2   Y′Y–B′X′Y n–2 Y′Y – B′X′Y 

Total     n   Y′Y n–1 Y′Y – CF 

 where the correction factor is calculated as usual, CF
Y
n

nY
2

2= =
Σb g .   
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The value for R2 is calculated as SSRegression
SSTotal

B X Y - CF
Y Y - CF

=
′ ′
′

, and is often expressed as a 

percent. Note that this calculation employs corrected sums of squares for both SSRegression and 
SSTotal.   

The Mean Squares (MS) for the SSRegression and SSError are calculated by dividing the SS 
(corrected sum of squares) by their d.f. (degrees of freedom).  The test of hypotheses for [H0:= 
β1] is then calculated as;   

 
( )

( )

B X Y-CF
MSRegression dfRegF= =

Y Y-CFMSTotal
dfError

′ ′

′
 

or  

 t =
b
S

F value1

b1

−
=

0b g  

where Sb1
 is obtained from the VARIANCE  COVARIANCE matrix.   

The VARIANCE  COVARIANCE matrix is calculated as from the (X′X)–1 matrix.   

 X X
c c
c c

00 01

10 11

′ =
L
NM

O
QP

−b g 1  

where the cij values are called Gaussian multipliers.  The VARIANCE-COVARIANCE matrix is 
then calculated from this matrix by multiplying by the MSError.   

 MSE X X
MSEc MSEc
MSEc MSEc

00 01

10 11

′ =
L
NM

O
QP

−b g 1  

The individual values then provide the variances and covariances such that  

 MSE*c00  =  Variance of b0  =  VAR(b0)  

 MSE*c11  =  Variance of b1  =  VAR(b1),   so S MSE*cb 111
=  

 MSE*c01  =  MSE*c10  =  Covariance of b0 and b0\1  =  COV(b0,b1)  

It is important to note that the variances and covariances calculated from the (X′X)–1 are for the 
bi (βi estimates), not for the Xi values. Also, COV(b0,b1) ≠ COV(X0,X1). 
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Application of matrix procedures to multiple regression first requires calculation of the X′X, X′Y 
and Y′Y matrices, where for dependent variable Y and independent variables X1 and X2.  For a 2 
factor multiple regression, these matrices are; 

 

n n n

1i 2i 3i
i=1 i=1 i=1

n n n n
2

1i 1i 1i 2i 1i 3i
i=1 i=1 i=1 i=1
n n n n

2
2i 1i 2i 2i 2i 3i

i=1 i=1 i=1 i=1
n n n n

2
3i 1i 3i 2i 3i 3i

i=1 i=1 i=1 i=1

n X X X

X X X X X X
X X

X X X X X X

X X X X X X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

  

n

i
i=1

n

1i i
i=1
n

2i i
i=1
n

3i i
i=1

Y

X Y
X Y

X Y

X Y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

 
n

2
i

i=1

Y Y= Y⎛ ⎞′ ⎜ ⎟
⎝ ⎠
∑  

As with the simple linear regression, these sums, sums of squares and cross products are required 
by any method of fitting multiple regression. Once these values are obtained, application of 
formulas for an algebraic solution is relatively easy for a two-factor model.  However, matrix 
procedures are more easily expanded to more than two independent variables than are 
summation notation formulas.  

The inversion technique we will use is called the sweepout technique, and it requires the 
application of “row operations".  Row operations consist of (1) multiplying any row by a scalar 
value, and (2) adding or subtracting any row from any other row. These are the only 
operations required to complete the sweepout technique after the matrices have been obtained 
and augmented.   

Obtaining a maximum of information from the technique requires reducing the X′X matrix one 
column at a time to an identity matrix. However, values of the regression coefficients, error sum 
of squares and inverse matrix will be correct even of the row operations are not applied in a 
column by column reduction.  

By “sweeping" out each column of the X′X matrix one by one to obtain an identity matrix, the 
sequentially adjusted sums of squares error can also be obtained.  This requires augmenting the 
X′X matrix with the X′Y matrix and an identity matrix prior to applying the row operations. The 
complete augmented matrix is given below.  The matrix has separate sections that are 
recognizable as matrices seen earlier.  This type of sectioned matrix is called a partitioned 
matrix.    

′ ′
′ ′
L
NM

O
QP

′
′

L
NM

O
QP

X X X Y I
X Y Y Y 0

  row operations  
I B (X X)
0 SSE -B

 
-1

 

Sections of the matrix may be left off if less information is required.  For example, if only the 
regression coefficients are needed, then the sweepout technique need be applied only to the 

matrix, ′ ′X X X Y   row operations  I B  , 

and if only the inverse is required, the only matrix needed is 

′ ′X X I   row operations  I (X X)  -1 . 

The regression coefficients and sum of squares error can be obtained by sweeping out the matrix, 
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′ ′
′ ′
L
NM

O
QP

L
NM

O
QP

X X X Y
X Y Y Y

  row operations  
I B
0 SSE

 . 

If the above matrix is swept out column by column, then it will also provide the sequentially 
adjusted sums of squares.  Only the use of the complete augmented matrix provides the inverted 
X′X matrix necessary to obtain the variance - covariance matrix, confidence limits and other 
types of sums of squares.   

The technique will be illustrated with an example using data from Snedecor and Cochran (1981; 
ex. 17.2.1). The example will employ the complete augmented matrix.  The original data 
matrices are; 

 X′X = 
17 188.2 700

188.2 3602.78 8585.1
700 8585.1 31712

  
L

N
MMM

O

Q
PPP

 X′Y= 
1295

16203.8
54081

L

N
MMM

O

Q
PPP

 Y′Y= [103075]  

The augmented matrix to be swept is then,  

17 188.2 700 1295 1 0 0
188.2 3602.78 8585.1  16203.8 0 1 0
700 8585.1 31712 54081 0 0 1

1295 16203.8 54081 103075 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

The first step in the sweepout technique is to multiply through the first row by the inverse of 17.  
This will result in a value of 1 in the first row - first column.  A multiple of this new first row is 
then subtracted from each of the other rows (2, 3 and 4).  The multiplier should be such that 
value(i,1)–[value(1,1)*multiplier] = 0 for i ≠ 1. 

 

The multiplier which accomplishes this is simply the value(i,1) since the new value(1,1) is unity 
(1). Therefore, every value(i,j) will be processed in the same way. The calculations would be,  

 for row 2: value(2,j) – (value(1,j)  * 118.2) 

 for row 3: value(3,j) – (value(1,j)  *   700) 

 for row 4: value(4,j) – (value(1,j)  *  1295) 

 

After applying these transformations we obtain the following matrix, 

COLUMN 1 SWEEP  

1 11.0706 41.1765 76.1765 0.05882 0 0
0 1519.30 835.688 1867.39 11.0706 1 0

 
0 835.688 2888.47 757.471 41.1765 0 1
0 1867.39 757.471 4426.47 76.1765 0 0

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 

At this point the effect of X (the intercept) has been removed from the model.  The value 
replacing Y′Y is 4426.471.  This is the corrected sum of squares of Y (i.e. Y was 103075, and 
has now been corrected for the mean,  yielding 4426.47).   
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The sweepout now proceeds to the second column.  A value of 1 is needed in the second column 
- second row to proceed with the development of the identity matrix. This is obtained by 
multiplying through the second row by the inverse of the value presently in that position (i.e. 
1519.30).  Then, the appropriate multiple of the new row 2 is subtracted from each of the other 
rows. Note that the first column remains unchanged since the value subtracted is always a 
multiple of zero. 

 

COLUMN 2 SWEEP 

1 0 35.08709 62.5694 0.13949 0.00729 0
0 1 0.550050 1.22911 0.00729 0.00066 0

  
0 0 2428.800 -269.686 35.0871 0.55005 1
0 0 -269.686 2131.236 62.5694 1.22911 0

⎛ ⎞−
⎜ ⎟−⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟−⎝ ⎠

 

The sweep then proceeds with the third column. Once again a value of 1 is required in row 3, 
column 3, and all rows other than row 3 will have a multiple of row 3 subtracted from them. 

 

COLUMN 3 SWEEP 

1 0 0 66.4654 0.646369 0.000660 0.014446
0 1 0 1.29019 0.000660 0.000783 0.000226

  
0 0 1 0.11104 0.014446 0.000226 0.000412
0 0 0 2101.291 66.46541 1.290191 0.11104

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

 

Once this swept out matrix has been obtained, most commonly desired calculations follow 
easily.  Some of these results are discussed below.   

 

There are also several checks which can be done on the calculations.  As the matrix is swept out, 
the null matrix (matrix of zeroes in the original augmented matrix) is replaced by the negative 
values of the regression coefficients if the calculations have been done correctly. As a second 
check, the product of the original X′X matrix and its inverse should produce an identity matrix. 
(i.e. X′X * (X′X)-1 = I ) 

REGRESSION COEFFICIENTS  

The regression coefficients are produced during the sweepout, replacing the X′Y matrix. The 
model for the analysis above is, 

  
20 1 1i 2iŶ = b  + b X  + b X  

  1i 2iŶ = 66.4654 + 1.2902X  + 0.1110X  

SEQUENTIALLY ADJUSTED SUMS OF SQUARES   
As each column is swept out, the sums of squares are “adjusted" for the factor removed. The first 
sweep adjusts for the intercept (i.e. 1 = n) on the diagonal of X′X, so the reduction in the Y is the 
correction factor or the adjustment for the mean. 
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  e.g.  C.F. = 103075 − 4426.470 = 98648.530  

The second sweep adjusts for the second term in the X matrix, usually X, and the reduction in the 
error term is that sum of squares attributable to X (given that X is already in the model).   

  e.g.  SS(X|X) = 4426.470 − 2131.236 = 2295.234  

The third sweep adjusts for X and the reduction in the sum of squares is attributable to X (given 
that X and X are already in the model). 

  e.g.  SS(X|X X) = 2131.236 − 2101.291 = 29.945   

Finally, the remaining sum of squares is the error sum of squares 

  SSE = 2101.291  

Note that since the variables are adjusted sequentially, the sums of squares obtained are 
dependent on the order in which the variables are entered. That is, if we had entered X first and 
X second, the sums of squares attributable to these two variables would not be the same as the 
results obtained above.  Only the correction factor would be the same (since it would have been 
entered first in both models).  

Each adjustment of the sum of squares takes one degree of freedom. The residual sum of squares 
has (nk) degrees of freedom, where n is the number of observations, and k is the number of 
sweeps, or the number of columns in the X′X matrix.  The mean square error is then, 

  SSE 2101.291MSE =  =  = 150.092
(n-k) (17 - 3)

 

PARTIAL SUMS OF SQUARES  
Since the sequentially adjusted sums of squares are dependent on the order in which the variables 
are entered, another value of interest is the partial sum of squares or the uniquely attributable 
sum of squares.  This is simply the sum of squares that would be accounted for by each variable 
if it had been entered into the model in last place.  This value could be obtained by reversing the 
sweep operation, and observing the change in the sum of squares as each variable was swept 
back into the model.   

The only change in sum of squares when a variable is swept back into the model is,  bc,  

So this calculation will give the partial SS due to variable X without actually doing all the 
calculations necessary to reverse the sweepout technique.  The elements (c) are obtained from 
the (X′X)-1 matrix and are called Gaussian multipliers.   

The partial SS due to X above does not change since it was the variable in the last position.  The 
partial SS due to X would be calculated as, 

  
2

1 0 2
(1.29019)SS(X |X  X )  =   = 2125.913
(0.000783)

  

 

VARIANCE  COVARIANCE MATRIX   

Another major result of the sweepout technique is the inverse of the X′X matrix.  Multiplying 
this matrix by the mean square error (MSE) gives the variance - covariance matrix of the 
regression coefficients. 

  e.g. VarCov  =  MSE * (X′X)-1 =  
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0.64637 0.00066 -0.01445 97.0149 0.0990 -2.1683

150.092 0.00066 0.00078 -0.00023 0.0990 0.1175 -0.0340
-0.01445 -0.00023 0.00041 -2.1683 -0.0340 0.0618

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

so, Var(b0)=97.0149,  Var(b1)=0.1175,  Var(b2)=0.0618,  Var(b12)=0.0340, etc.   

The variance - covariance matrix can also be used to obtain confidence intervals about estimates 
of Ŷ  for particular values of X and X. The most versatile approach is to use matrix algebra in 
these calculations.  The equation is 

  2 -1
ŶS  =  MSE (L (X X) L)′ ′  

where L is a vector of values for X corresponding to Ŷ .  It may also be a vector of hypothesized 
X values for which a variance is needed.   

For example, if we wish to predict the response ( Ŷ ) and its variance when X = 4 and X = 24, 
first we would calculate the response, 

  1i 2iŶ=66.4654+1.2902X +0.1110X 66.4654+1.2902(4)+0.1110(24) 68.9622= =   

Using L = [ 1  4  24 ], (note that a 1 is included for the intercept) the variance of the estimate is 
then, 

  
2
Ŷ

0.64637 0.00066 -0.01445 1
S 150.092[1  4  24] 0.00066 0.00078 -0.00023 4 = 24.6782

-0.01445 -0.00023 0.00041 24

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

and the standard error is  24.6782    =  4.9677.   

 

The sweepout technique is not the only method of matrix inversion. However, its application to 
the augmented matrix described above is a relatively simple and versatile method of obtaining 
most of the results commonly desired from a multiple regression analysis.   
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