Three factor multiple regression from Snedecor and Cochran (1967), table 13.10.1, page 405.

            Y = estimated plant available phosphorus in the soil (20 C)

            X1 = inorganic phosphorus

            X2 = organic phosphorus soluble in K2CO3 and hydrolized by hypobromite

            X3= organic phosphorus soluble in K2CO3 and NOT hydrolized by hypobromite

 

All least squares regression analyses start with the same three matrices. 

 

X =

 

1

0.4

53

158

 

Y =

 

64

 

 

 

1

0.4

23

163

 

 

 

60

 

 

 

1

3.1

19

37

 

 

 

71

 

 

 

1

0.6

34

157

 

 

 

61

 

 

 

1

4.7

24

59

 

 

 

54

 

 

 

1

1.7

65

123

 

 

 

77

 

 

 

1

9.4

44

46

 

 

 

81

 

 

 

1

10.1

31

117

 

 

 

93

 

 

 

1

11.6

29

173

 

 

 

93

 

 

 

1

12.6

58

112

 

 

 

51

 

 

 

1

10.9

37

111

 

 

 

76

 

 

 

1

23.1

46

114

 

 

 

96

 

 

 

1

23.1

50

134

 

 

 

77

 

 

 

1

21.6

44

73

 

 

 

93

 

 

 

1

23.1

56

168

 

 

 

95

 

 

 

1

1.9

36

143

 

 

 

54

 

 

 

1

26.8

58

202

 

 

 

168

 

 

 

1

29.9

51

124

 

 

 

99

 

 

X´X =

 

18

215

758

2214

 

X´Y =

 

1463

 

 

 

215

4321.02

10139.5

27645

 

 

 

20706.2

 

 

 

758

10139.5

35076

96598

 

 

 

63825

 

 

 

2214

27645

96598

307894

 

 

 

187542

 

 

            Y´Y =  [ 131299 ]

 

Create a fully augmented matrix of the form; 

 

X´X

X´Y

I

 

 

(X´Y)´

Y´Y

0

 

 


The resulting matrix contains;

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

n

SX1

SX2

SX3

SY

1

0

0

0

 

 

SX1

SX12

SX1X2

SX1X3

SX1Y

0

1

0

0

 

 

SX2

SX1X2

SX22

SX2X3

SX2Y

0

0

1

0

 

 

SX3

SX1X3

SX2X3

SX32

SX3Y

0

0

0

1

 

 

SY

SX1Y

SX2Y

SX3Y

SY2

0

0

0

0

 

 

Numerically for this problem given previously the matrix is;

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

18

215

758

2214

1463

1

0

0

0

 

 

215

4321.02

10139.5

27645

20706.2

0

1

0

0

 

 

758

10139.5

35076

96598

63825

0

0

1

0

 

 

2214

27645

96598

307894

187542

0

0

0

1

 

 

1463

20706.2

63825

187542

131299

0

0

0

0

 

 

The first step (divide row 1 by value1,1) in the sweepout technique produces,

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

11.944444

42.111111

123

81.277778

0.055556

0

0

0

 

 

215

4321.02

10139.5

27645

20706.2

0

1

0

0

 

 

758

10139.5

35076

96598

63825

0

0

1

0

 

 

2214

27645

96598

307894

187542

0

0

0

1

 

 

1463

20706.2

63825

187542

131299

0

0

0

0

 

 

And after sweeping out the first column (subtracting a multiple of row 1 from all other rows) we have;

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

11.944444

42.111111

123

81.277778

0.055556

0

0

0

 

 

0

1752.964444

1085.611111

1200

3231.477778

-11.944444

1

0

0

 

 

0

1085.611111

3155.777778

3364

2216.444444

-42.111111

0

1

0

 

 

0

1200

3364

35572

7593

-123

0

0

1

 

 

0

3231.477778

2216.444444

7593

12389.61111

-81.277778

0

0

0

 

 

We start the second column sweep by dividing row 2 by value2,2,

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

11.944444

42.111111

123

81.277778

0.055556

0

0

0

 

 

0

1

0.6193

0.684555

1.843436

-0.006814

0.00057

0

0

 

 

0

1085.611111

3155.777778

3364

2216.444444

-42.111111

0

1

0

 

 

0

1200

3364

35572

7593

-123

0

0

1

 

 

0

3231.477778

2216.444444

7593

12389.61111

-81.277778

0

0

0

 

 

 
and finish sweeping the second column to obtain;

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

34.713915

114.823375

59.258959

0.136943

-0.006814

0

0

 

 

0

1

0.6193

0.684555

1.843436

-0.006814

0.00057

0

0

 

 

0

0

2483.458674

2620.839842

215.189831

-34.713915

-0.6193

1

0

 

 

0

0

2620.839842

34750.53439

5380.87679

-114.823375

-0.684555

0

1

 

 

0

0

215.189831

5380.87679

6432.588616

-59.258959

-1.843436

0

0

 

 

The third column starts with,

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

34.713915

114.823375

59.258959

0.136943

-0.006814

0

0

 

 

0

1

0.6193

0.684555

1.843436

-0.006814

0.00057

0

0

 

 

0

0

1

1.055318

0.086649

-0.013978

-0.000249

0.000403

0

 

 

0

0

2620.839842

34750.53439

5380.87679

-114.823375

-0.684555

0

1

 

 

0

0

215.189831

5380.87679

6432.588616

-59.258959

-1.843436

0

0

 

 

and after being swept out produces,

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

0

78.189139

56.251024

0.622176

0.001843

-0.013978

0

 

 

0

1

0

0.030996

1.789774

0.001843

0.000725

-0.000249

0

 

 

0

0

1

1.055318

0.086649

-0.013978

-0.000249

0.000403

0

 

 

0

0

0

31984.71367

5153.782984

-78.189139

-0.030996

-1.055318

1

 

 

0

0

0

5153.782984

6413.942579

-56.251024

-1.789774

-0.086649

0

 

 

Finally the fourth column in the X´X matrix is started and swept out,

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

0

78.189139

56.251024

0.622176

0.0018428

-0.0139781

0

 

 

0

1

0

0.030996

1.789774

0.001843

0.0007249

-0.0002494

0

 

 

0

0

1

1.055318

0.086649

-0.013978

-0.0002494

0.0004027

0

 

 

0

0

0

1

0.161133

-0.002445

-0.0000010

-0.0000330

0.000031

 

 

0

0

0

5153.782984

6413.942579

-56.251024

-1.7897741

-0.0866492

0

 

 

and the final result is;

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

0

0

43.652198

0.813316

0.0019185

-0.0113982

-0.002445

 

 

0

1

0

0

1.78478

0.001919

0.0007249

-0.0002483

-0.000001

 

 

0

0

1

0

-0.083397

-0.011398

-0.0002483

0.0004375

-0.000033

 

 

0

0

0

1

0.161133

-0.002445

-0.0000010

-0.0000330

0.000031

 

 

0

0

0

0

5583.499658

-43.652198

-1.7847797

0.0833971

-0.161133

 

 


The resulting matrix is of the form; 

 

I

B

(X´X)-1

 

 

0

SSE

-B´

 

 

and contains the values

 

X0

X1

X2

X3

X´Y

c0

c1

c2

c3

 

 

1

0

0

0

b0

c00

c01

c02

c03

 

 

0

1

0

0

b1

c10

c11

c12

c13

 

 

0

0

1

0

b2

c20

c21

c22

c23

 

 

0

0

0

1

b3

c30

c31

c32

c33

 

 

0

0

0

0

SSE

-b0

-b1

-b2

-b3

 

 

The solution to the regression equation is then,

Yi  =  43.652 + 1.785X1i - 0.083X2i + 0.161X3i + e

 

The sums of squares are given by the sequential reduction in the YY matrix

MATRIX

Y´Y VALUE

INTERPRETATION of the REPLACEMENT VALUE

DIFFERENCE from PREVIOUS VALUE

INTERPRETATION

of the DIFFERENCE

Original

131299

SY2 (uncorrected)

 

 

Col 1 sweep

12389.6111

SY2-(SY)2/n = SSY|X0

118909.3840 

(Y)2/n = C.F.

Col 2 sweep

6432.5886

SSY|X0,X1

5957.0225

SeqSSX1

Col 3 sweep

6413.9426

SSY|X0,X1,X2

18.6460 

SeqSSX2

Col 4 Sweep

5583.4997

SSY|X0,X1,X2,X3 = SSE

830.4429

SeqSSX3

 

Partial sums of squares, or fully adjusted sums of squares, are given by

PARTIAL SS  =  bk2/ckk 

Partial SSX1  =  b12/c11  =  1.78482 / 0.0007249  =  4394.1523

Partial SSX2  =  b22/c22  =  0.083402 / 0.0004375  =  15.8979

Partial SSX3  =  b32/c33  =  0.16112 / 0.00003127  =  830.4429

Recall that I number the positions in the X´X matrix differently, from k = 0, 1, ... , p (where p is the number of parameters excluding the intercept) instead of starting at 1 as other matrices.  This is done in order to be able to associate the matrix position with the regression coefficient subscript.  




Modified: August 16, 2004
James P. Geaghan