
Statistical Techniques II
EXST7015

Post-ANOVA or
Post-Hoc Tests
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Overview of ANOVA
Recall that we are testing for differences 
among indicator variables.  

The treatments may be fixed or random.
H0: µ1 = µ2 =  µ3 = ... =  µk for fixed effects.
H0: σ2

τ = 0 for random effects. 
Assume ei ∼ NIDrv(0,σ2).  Remember that 
this covers 3 separate assumptions.  
Also, assume no block "interactions" for 
the RBD.  
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Overview (continued)
Every analysis can be expressed as a 
model with appropriate notation and 
subscripting.  

CRD : Yij = µ + τi + εij  
For the moment we will be concerned 
only with examining for differences 
among the treatment levels.  
We will assume that we have already 
detected a significant difference among 
treatments levels with ANOVA. 
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Overview (continued)
Treatments levels may be fixed or 
random.  Determining appropriate tests 
depends on recognizing correctly.  
With random effects we are probably not 
interested in individual treatment levels.  
We are likely to be interested in the 
variability among the treatment levels 
and the distribution of the levels.  
With fixed effects we will probably want 
to compare individual levels.   
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Post ANOVA tests
Having rejected the Null hypothesis we 
wish to determine how the treatment 
levels interrelate.  This is the 
"post-ANOVA" part of the analysis. 
These tests fall into two general 
categories.  

Post hoc tests (LSD, Tukey, Scheffé,  
Duncan's, Dunnett's, etc.)
A priori tests or pre-planned comparisons 
(contrasts)
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Post ANOVA (continued)
A priori tests are better.  These are tests 
that the researcher plans on doing before 
they gather data, and if we dedicate 1 d.f. 
to each one we generally feel comfortable 
doing each at some specified level of 
alpha.  
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Post ANOVA (continued)

However, since multiple tests do entail 
risks of higher experiment wide error 
rates, it would not be unreasonable to 
apply some technique, like Bonferroni's 
adjustment, to insure an experimentwise 
error rate of the desired level of alpha (α).   
So how might we do these "post hoc" 
tests?  
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Post ANOVA (continued)

The simplest approach would be to do 
pairwise test of the treatments using 
something like the two-sample t-test.  
This tests examines the null hypothesis

H0: µ1 = µ2 or H0: µ1 - µ2 = 0, 
against the alternative 
Ha:µ1-µ2 ≠ 0, or Ha:µ1-µ2≥ 0 or Ha:µ1-µ2 ≤ 0.   
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Post ANOVA (continued)
Recall two things about the two-sample 
t-test.  

First, in a t-test we had to determine if the 
variance was equal for the two populations 
tested.  
Second, the variance of the test (variance of 
the difference between µ1 and µ2) was equal 
to σ2

1/n1 + σ2
2/n2.  If the variance are equal (as 

they MUST be for ANOVA) then the variance 
is σ2(1/n1+1/n2).  We estimate σ2 with MSE.   
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Post ANOVA (continued)

So, we would test each pair of means 
using the two sample t-test as 
t = (⎯Y1-⎯Y2) / √(MSE((1/n1+1/n2))).  
If the design is balanced we can simplify 
this to t = (⎯Y1-⎯Y2)/√(2MSE/n). 
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Post ANOVA (continued)

Notice that if the value of t is greater than 
the tabular value of t, we would reject the 
null hypothesis.  
If the value of t is less than the tabular 
value we would fail to reject.  
Lets call the tabular value t*, and write 
the case for rejection of the Null 
Hypothesis (H0) as;
t* ≤ (⎯Y1-⎯Y2) / √(MSE((1/n1+1/n2))). 
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Post ANOVA (continued)
So we would reject H0 if 

t* ≤ (⎯Y1-⎯Y2) / √(MSE((1/n1+1/n2)))  
t*[√(MSE((1/n1+1/n2)))] ≤ (⎯Y1-⎯Y2)  
(⎯Y1-⎯Y2) ≥ t*[√(MSE((1/n1+1/n2)))]  

So, for any difference (⎯Y1-⎯Y2) that is 
greater than t*[√(MSE((1/n1+1/n2)))] we 
find the difference statistically different 
(reject Ho), and for any value less we find 
the difference consistent with the null 
hypothesis.  Right?  
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Post ANOVA (continued)
This value of t*[√(MSE((1/n1+1/n2)))] is 
what R. A. Fisher called the "Least 
Significant Difference", commonly called 
the LSD (not to be confused with the 
Latin Square Design = LSD).  
We calculate this value for each pair of 
differences and if the observed difference 
is less, the treatments are "not 
significantly different".  If greater they are 
"significantly different". 
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Post ANOVA (continued)

One last detail.  If the design is balanced 
then the value of  t*[√(MSE((1/n1+1/n2)))] 
simplifies to t*[√(2MSE/n)].  This is nice 
because all pairwise comparisons would 
use the same test value.  
It is nice, but not necessary.  
This is the first of our post ANOVA tests, 
it is called the "LSD". 
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Post ANOVA (continued)

But hey, wait a minute!  Didn't Fisher 
invent ANOVA in the first place to avoid 
doing a bunch of separate t-tests?  So, 
now we are doing a bunch of separate 
t-tests.  
What is wrong with this picture?  

16a_PostANOVA_Tests 15



Post ANOVA (continued)

So, Fisher comes up with this.  
OK.  When we do a bunch of separate 
t-tests, we don't know if there are any real 
differences at the α level. When we do the 
LSD as a post ANOVA test we SHOULD 
know that there are some differences.  So 
we only do the LSD if the ANOVA says 
that there are differences, otherwise, 
don't do the LSD.  
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Post ANOVA (continued)
This is called "Fisher's Protected LSD".  
We can use the LSD ONLY if the ANOVA 
shows differences, otherwise we are NOT 
justified in using the LSD.  
Makes sense.  But there were still a lot of 
nervous statisticians looking for 
something a little better.  As a result 
there are MANY alternative calculations.  
We will discuss the "classic" solutions.  
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Post ANOVA (continued)
Basically, we calculate the LSD with our 
chosen value of α. We then do our mean 
comparisons.  Each test has a pairwise 
error rate of α.  
We have already seen one alternative,  
the Bonferroni adjustment.  If we do 5 
tests, or 10 tests, our error rate is no 
more than 5(α/2) or 10(α/2). 
Generally, for g tests our error rate is no 
more than gα/2.    
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Post ANOVA (continued)

To keep an experiment wide error rate of 
α, we simply do each comparison using a 
t value for an α equal to α/2g. 
For two tailed tests (which the LSD 
almost always is) we do each test at α/2 
and the Bonferroni test would use a t for 
an error rate of α/2g. 
One tailed tests are possible.   
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Post ANOVA (continued)
The Bonferroni adjustment is fine if we 
are only doing a few tests. However, it is 
an upper boundary of the error, the 
highest that the error can be.  The real 
probability of error is actually less.  
So if we are doing very many tests, 
Bonferroni gets very conservative, giving 
us an actual error rate much lower than 
the α we really want.  

16a_PostANOVA_Tests 20



Post ANOVA (continued)

So we seek alternatives.  
The big ones are Tukey's and Scheffé's.  
We will also consider Dunnett's and 
Duncan's since they are commonly used.  

16a_PostANOVA_Tests 21



Post ANOVA (continued)
Tukey is my favorite.  This test basically 
allows for all pairwise tests.  
Tukey developed his own tables.  The 
table values are similar to t values, but 
gives the correct value to use for given 
values of α, the number of tests and d.f. 
error.  
Note SAS puts "HSD" by Tukey's.  This 
stands for "Honest Significant 
Difference".  
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Post ANOVA (continued)
Scheffé came up with a very conservative 
test.  This test allows for all possible 
tests (all possible contrasts).  Not only 
can we test all pairwise tests, but all 
combinations of tests (including 
contrasts to be discussed later). 

e.g. H0: (µ1+µ2)/2 = (µ3+µ4+µ5 )/3
This test is appropriate for "data 
dredging".  
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Post ANOVA (continued)

Note that if you want to do a couple of 
pairwise tests you can calculate 
Bonferroni and compare to Tukey's.  
Tukey's is conservative for fewer than all 
possible pairwise tests and Bonferroni is 
conservative because it is a bound.  
For other sets of tests including some 
that are not pairwise, compare Bonferroni 
to Scheffé.   

16a_PostANOVA_Tests 24



Post ANOVA (continued)
Comparison wise error rate: LSD
Experiment wise error rate: Tukey (all 
pairwise), Bonferroni (selected tests), 
Scheffé (all possible contrasts). 
When doing pairwise tests, the LSD is the 
test most likely to find differences, and 
the one most likely to be wrong when it 
finds a difference.  
Scheffé is the test least likely to find a 
difference, and least likely to be wrong.  
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Post ANOVA (continued)
There are two other tests that are used in 
particular circumstances.  

Dunnett's is used to compare one 
treatment to all other treatments.  
Duncan's intended to give a groupwise 
or family wise error rate.  When means 
are grouped according to which are 
different and which are not, this test 
should have only a α% chance of error 
for each group.  
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Post ANOVA (continued)

All of these tests can be expressed in one 
of two ways.   
If the analysis is BALANCED, then there 
is a popular expression of pairwise tests 
that starts with ranked means.  
Suppose we calculate a value of the LSD 
equal to 8, and we have sorted the means 
of treatment levels and have 5, 14, 17, 23, 
29, and 38.   
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Post ANOVA (continued)

Treatment Level Mean Groups
3 38
1 29
6 23
5 17
2 14
4 5

LSD = 8
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Post ANOVA (continued)

Treatment Level Mean Groups
3 38 A
1 29 B
6 23 B C
5 17 D C
2 14 D
4 5 E

LSD = 8
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Post ANOVA (continued)

Treatment Level Mean Groups
3 38 A
1 29 A B
6 23 B C
5 17 C
2 14 C
4 5 D

Tukey adjusted = 10
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Post ANOVA (continued)

Treatment Level Mean Groups
3 38 A
1 29 A B
6 23 A B
5 17 B C
2 14 B C
4 5 C

Scheffé adjusted = 15
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Examples

Test the effects of fumigants on wire 
worms.  Treatments are two fumigants (C 
and S) and a control (0).  
In SAS these are done from the GLM 
using the means statement.  They can be 
done from MIXED using the LSMeans 
statement.  
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Examples (continued)

SAS statements 
PROC GLM DATA=FUMIGANT; 
    CLASSES FUMIGANT BLOCK REP;
    TITLE3 'Analysis of fumigant with RBD';
  MODEL WORMS = FUMIGANT BLOCK FUMIGANT*BLOCK;
  MEANS FUMIGANT / DUNNETT('0')
        E=FUMIGANT*BLOCK;
  MEANS FUMIGANT / LSD DUNCAN TUKEY SCHEFFÉ   
        E=FUMIGANT*BLOCK; RUN; QUIT;
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Examples (continued)

Results with the LSD

Alpha                            0.05
Error Degrees of Freedom            8
Error Mean Square            24.52917
Critical Value of t           2.30600
Least Significant Difference   3.6116

Grouping   Mean      N    FUMIGANT
A         9.700     20    0
B         5.250     20    C
B         4.800     20    S 
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Examples (continued)

Results with Duncan's MRT.    
Alpha                        0.05
Error Degrees of Freedom        8
Error Mean Square        24.52917
Number of Means          2          3
Critical Range       3.612      3.764

Grouping   Mean      N    FUMIGANT
A         9.700     20    0
B         5.250     20    C
B         4.800     20    S
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Examples (continued)

Results with Tukey's.    
Alpha                                   0.05
Error Degrees of Freedom                   8
Error Mean Square                   24.52917
Critical Value of Studentized Range  4.04101
Minimum Significant Difference        4.4752

Grouping        Mean      N    FUMIGANT
     A         9.700     20    0
B    A         5.250     20    C
B              4.800     20    S
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Examples (continued)

Results with Scheffé's.    
Alpha                              0.05
Error Degrees of Freedom              8
Error Mean Square              24.52917
Critical Value of F             4.45897
Minimum Significant Difference   4.6771

Grouping        Mean      N    FUMIGANT
     A         9.700     20    0
B    A         5.250     20    C
B              4.800     20    S
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Examples (continued)

Results with Dunnett's.    
Alpha                              0.05
Error Degrees of Freedom              8
Error Mean Square              24.52917
Critical Value of Dunnett's t   2.67281
Minimum Significant Difference   4.1861

           Difference    Simultaneous
 FUMIGANT     Between   95% Confidence
Comparison      Means       Limits
C    - 0       -4.450   -8.636  -0.264  ***
S    - 0       -4.900   -9.086  -0.714  ***
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Post ANOVA (continued)
Comparison of ranked means works very 
well if the analysis is balanced.  If the 
analysis is not balanced there can be a 
problem.  
It is possible that means that are close 
together are significantly different, while 
means that have a greater difference are 
not significantly different.  
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Post ANOVA (continued)

mse = 25
tmt mean n test diff se 2*se
1 18 5 1 v 2 5 2.29 4.58
2 13 100 2  v 3 1 2.29 4.58
3 12 5 1 v 3 6 3.16 6.32

Variance = MSE(1/n1 + 1/n2)
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Post ANOVA (continued)

For unbalanced tests the best way to 
check for difference is to calculate a 
confidence interval for each mean and 
see if the confidence intervals overlap.
By default, SAS will use this approach for 
unbalanced means.  
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Example
Typhoid strain example.  Number of days 
to mouse mortality was the dependent 
variable.  
SAS statements 

PROC MIXED DATA=OnebyOne cl; CLASSES STRAIN;
TITLE3 'ANALYSIS OF VARIANCE with PROC MIXED';
MODEL DAYS = STRAIN / htype=3 DDFM=Satterthwaite;
repeated / group=strain;
LSMEANS STRAIN / ADJUST=TUKEY pdiff;
LSMEANS STRAIN / ADJUST=SCHEFFE pdiff;
LSMEANS STRAIN / ADJUST=BON pdiff;
*NOTE that normally only one post-ANOVA examination 
would be done.  We have done several here for comparison.;
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Example (continued)

First the LSMeans statement prints the 
means 
                         Least Squares Means
                              Standard
Effect   STRAIN   Estimate      Error     DF    t Value    Pr > |t|
STRAIN   11C        7.3667     0.3126     59      23.57      <.0001
STRAIN   9D         4.0323     0.2475     30      16.29      <.0001
STRAIN   DSC1       7.7970     0.2233    132      34.91      <.0001
STRAIN   11C        7.3667     0.3126     59      23.57      <.0001
STRAIN   9D         4.0323     0.2475     30      16.29      <.0001
STRAIN   DSC1       7.7970     0.2233    132      34.91      <.0001
STRAIN   11C        7.3667     0.3126     59      23.57      <.0001
STRAIN   9D         4.0323     0.2475     30      16.29      <.0001
STRAIN   DSC1       7.7970     0.2233    132      34.91      <.0001

These are repeated 3 times because there are 3 
LSMeans statements in the SAS program.  
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Example (continued)

Results for the LSD and the Tukey 
adjustment.  

 
                               Differences of Least Squares Means
                                    Standard
Effect  STRAIN _STRAIN   Estimate      Error      DF    t Value    Pr > |t|   Adjustment      Adj P
STRAIN  11C    9D          3.3344     0.3987    88.1       8.36      <.0001   Tukey-Kramer   <.0001
STRAIN  11C    DSC1       -0.4303     0.3842     121      -1.12      0.2649   Tukey-Kramer   0.5037
STRAIN  9D     DSC1       -3.7647     0.3334    85.8     -11.29      <.0001   Tukey-Kramer   <.0001
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Example (continued)

Results for the Bonferroni and the 
Scheffé adjustment

                              Differences of Least Squares Means
                                     Standard
Effect    STRAIN  _STRAIN  Estimate     Error      DF    t Value    Pr > |t|   Adjustment      Adj P
STRAIN    11C     9D         3.3344    0.3987    88.1       8.36      <.0001   Scheffe        <.0001
STRAIN    11C     DSC1      -0.4303    0.3842     121      -1.12      0.2649   Scheffe        0.5358
STRAIN    9D      DSC1      -3.7647    0.3334    85.8     -11.29      <.0001   Scheffe        <.0001

STRAIN    11C     9D         3.3344    0.3987    88.1       8.36      <.0001   Bonferroni     <.0001
STRAIN    11C     DSC1      -0.4303    0.3842     121      -1.12      0.2649   Bonferroni     0.7950
STRAIN    9D      DSC1      -3.7647    0.3334    85.8     -11.29      <.0001   Bonferroni     <.0001
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Post-ANOVA tests 
The test we have seen so far are often 
(usually?) done with no a priori 
hypotheses in mind.  We do not have 
certain comparisons in mind before 
doing the experiment, we want to 
examine many, or all, levels of the 
treatments for differences from one 
another.  
The experimentwise error rate is intended 
to allow this (except for the LSD).  
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Post-ANOVA tests  (continued)

However, sometimes we do have some 
particular comparisons in mind when we 
do an experiment.  
When we want some lesser number of 
comparisons, and they are determined a 
priori (without looking at the data), then 
we can use a less stringent criteria.  
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Post-ANOVA tests  (continued)

We generally feel comfortable with one 
test per degree of freedom at some 
specified level of alpha (α), just as we did 
in regression (looking at each regression 
coefficient with an α level of error).  
This is the case with a priori contrasts.  

16a_PostANOVA_Tests 48


