
Statistical Techniques II
EXST7015

Multiple Regression  (Part 1)
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The population equation is; 
Yi = β0 + β1X1i + β2X2i + β3X3i + εi  

The sample equation is; 
Yi = b0 + b1X1i + b2X2i + b3X3i + ei   

Always remember that our 
estimates of the bi are sample 
estimates of the true population 
values.   

Multiple regression
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Multiple regression (continued)

The objectives in multiple regression are 
generally the same as SLR.  

Testing hypotheses (about βi values, 
predicted values, correlations), 
quantifying relationships (but NOT proving 
that there is a relationship) 
estimating parameters with confidence 
intervals.  
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Multiple regression (continued)

The assumptions for the regression are 
the same as for Simple Linear Regression

Normality
Independence
Homogeneity of variance
Xi measured without error 
in short: εi ~ NIDr.v.(0,σ2).  Do not use this 
expression in an exam unless you can 
explain how it relates to the assumptions.  
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Multiple regression (continued)

The interpretation of the parameter 
estimates are the same as simple linear 
regression

For the slope, the units are Y units per X 
units, and measure the change in Y for a 1 
unit change in X). 
For the intercept the units are Y units. 
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Multiple regression (continued)

The diagnostics used in simple linear 
regression are mostly the same for 
multiple regression. 

Residuals can still be examined for outliers, 
homogeneity, normality, curvature, 
influence, etc., as with SLR.  
The only difference is that, since we have 
several X's, we would usually plot the 
residuals on Yhat instead of a single X 
variable.  
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Interpretation
From our discussion of Extra SS you may 
recall that SAS will provide several types 
of SS.  
The first is called SS Type I, or the 
Sequential SS. 

SSX1
SSX2|X1
SSX3|X1,X2
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Interpretation (continued)

There will be some specific instances 
where these are desirable.  
However, we will usually want the 
variables adjusted for each other.  All 
variables adjusted for all other variables 
in the model.  
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Interpretation (continued)

This is desirable because when we adjust 
for other variables we  

account for the effect of the other variables, 
or we
remove the effect of the other variables, or 
we 
hold the other variables constant.  
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Interpretation (continued)
So we know that in multiple regression 
each variable may have an effect on the 
dependent variable, and we want to 
isolate the effect of each variable while 
adjusting for the effect of other variables 
on the dependent variable (Yi). 
The Type III SS do this, while the Type I 
SS adjust in a particular order (WHICH IS 
NOT UNIQUE!!)  
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Interpretation (continued)
Note that the Type II or Type III SS (these 
are the same for regression) are also 
called the PARTIAL SS.  The may also be 
referred to as the fully adjusted SS or the 
uniquely attributable SS.  

SSX1| X2, X3
SSX2| X1, X3
SSX3| X1, X2  
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Interpretation (continued)

So we will generally use the Partial SS.  
Remember the word PARTIAL.  
What about other things in regression, 
are they sequentially adjusted or fully 
adjusted?  The regressions coefficients 
for example.  Or correlations that may be 
calculated between the Yi and the various 
Xi. 

07a_Multiple Regression Introduction 12



Interpretation (continued)

The regression coefficients in a multiple 
regression are called the partial 
regression coefficients, and we will see 
partial correlation coefficients.  The word 
partial suggests that these are FULLY 
ADJUSTED, 
and this is true.  
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Numerical examples

We will look at two examples, a three 
factor (plus intercept) regression and a 
nine factor multiple regression.  
We will see most diagnostics with both 
examples.  
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Example 1

Snedecor and Cochran (1967) 
Three types of soil phosphorus levels 
were determined, and the amount of 
phosphorus available to plants was 
determined.  We want to do a regression 
that determines which of the soil 
measurement relate (correlate) to the 
plant available phosphorus.  
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Example 1 (continued)
The 4 variables in the data set are; 

Plant available phosphorus, the dependent 
variable.  
Inorganic phosphorus, the first 
independent variable (order is not 
important if Type II SS are used).  
Organic phosphorus hydrolyzed in 
hypobromite, another independent variable.
Organic phosphorus NOT hydrolyzed in 
hypobromite, also a independent variable.  
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Example 1 (continued)

The SAS program. 
PROC REG is used for this problem.  
There were a number of new options 
used.  
31   PROC REG DATA=ONE ALL LINEPRINTER; 
     TITLE2 'PROC REG OUTPUT WITH ALL OPTIONS';
32      MODEL Y = X1 X2 X3 / INFLUENCE;
33        TEST X1=2; TEST X1=X2=X3;
34   RUN;    OPTIONS PS=60 LS=120;
35      MODEL Y = X1 X2 X3 / PARTIAL;
36      PLOT RESIDUAL.*PREDICTED. / VREF=0;
37   RUN;
38   OPTIONS LS=80;
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Example 1 (continued)

The "ALL" option produces a host of output, 
but not everything.  The "INFLUENCE" and 
"PARTIAL" are also needed for some the 
output we will look at. 
The lineprinter option causes graphics 
output to be done with text characters in the 
output (and not high resolution graphics).  
Also note that there are two tests statements 
requested.   
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Example 1 (continued)

OUTPUT 
The first output is the "Descriptive 
Statistics".  For each variable (including 
the intercept, represented by a column of 
ones in the X matrix) this output gives 
some basic summary statistics including 
the , Sum, Mean,  Uncorrected SS, 
Variance, and Std Deviation.  There is no 
information here not available elsewhere 
(proc means or proc univariate).   
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Example 1 (continued)
The second section is the "Uncorrected 
Sums of squares and Crossproducts".  
This section is completely redundant 
with the SS and CP matrix we already 
plan to discuss. We will ignore this 
section.  
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Example 1 (continued)

The third section gives the simple 
correlations between the various 
independent and dependent variables.  Is 
has some utility in examining for 
multicollinearity and will be discussed 
later.   
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Example 1 (continued)

The fourth section contains the "Model 
Crossproducts X'X X'Y Y'Y" information 
we talked about in our discussion of 
matrix algebra.  You are responsible for 
knowing what is in this section (but not 
how to derive this section with matrix 
algebra).  
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Example 1 (continued)
The three matrices are contained in a 
small array with X'X a 4 by 4 matrix in the 
upper left, X'Y a 4 by 1 matrix on the 
upper right, and Y'Y is the scalar value (a 
1 by 1 matrix) in the lower right corner. 
The remaining 1 by 3 matrix in the lower 
left is the (X'Y)'.   

X'X (4x4) X'Y (4x1)
(X'Y)' (1x4) Y'Y (1x1)
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Example 1 (continued)
Calculated values in the resulting 5 by 5 
matrix are given below.  

Intercept X1 X2 X3 Y
Intercept n ΣX1 ΣX2 ΣX3 ΣY

X1 ΣX1 ΣX2
1 ΣX1X2 ΣX1X3 ΣX1Y

X2 ΣX2 ΣX1X2 ΣX2
2 ΣX2X3 ΣX2Y

X3 ΣX3 ΣX1X3 ΣX2X3 ΣX2
3 ΣX3Y

Y ΣY ΣX1Y ΣX2Y ΣX3Y ΣY2
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Example 1 (continued)
We will occasionally refer to the X matrix 
and the X'X matrix as the semester 
progresses.  The X matrix is the matrix of 
the various independent values (Xi).  The 
X'X contains all of the SS and cross 
products of those variables.  
The X matrix has p columns and the X'X 
is a pxp square matrix.  
Note the symmetry of the off diagonal 
elements.     
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Example 1 (continued)

The position of the elements of the "X'X 
Inverse, Parameter Estimates, and SSE" 
are as follows.   

(X'X)-1 (4x4) B (4x1)
B (1x4) SSE (1x1)

07a_Multiple Regression Introduction 26



Example 1 (continued)

When the X'X matrix is inverted we get 
the elements of the (X'X)-1, the regression 
coefficients and the SSError.  We will not 
go into detail on this.  We will see the 
SSError and regression coefficients 
elsewhere.  We are interested in the 
(X'X)-1 because when multiplied by the 
MSE it gives the Variance- Covariance 
matrix.  We will see this matrix later.     
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Example 1 (continued)

Next in the output is the "Analysis of 
Variance" table.  
                 Sum of        Mean
Source   DF     Squares      Square
Model     3  6806.11145  2268.70382
Error    14  5583.49966   398.82140
C Total  17 12389.61111

      F Value       Prob>F
        5.689       0.0092
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Example 1 (continued)

Note that in multiple regression we have 
a 3 d.f. test in the ANOVA table. 
This is a test of  Ho: β1 = β2 = β3 = 0, or a 
joint test of   Ho: β1 = 0,  β2 = 0, β3 = 0, so it 
is a 3 d.f. test. 
This test is usually not very interesting, 
because we included 3 variables and are 
interested in examining them 
individually.  We may consider this 3 a 
priori test of interest.
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Example 1 (continued)

In this case we note that the test is highly 
significant, which suggests that there is 
some correlation between the dependent 
and independent variables.  
We also note that the MSE = 398.82140, 
and that it has 14 d.f..  These values will 
be used in many of the calculations that 
follow.   
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Example 1 (continued)

Degrees of freedom (d.f.) in multiple 
regression.

The model will have p-1 d. f., where p is the 
number of parameters including the 
intercept.
The corrected total has n-1 d.f., where n is 
the number of observations.
The error has n-p d.f.  
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Example 1 (continued)

Another section of some minor interest 
are the summary statistics below the 
ANOVA table.  

Root MSE   19.97051       R-square   0.5493
Dep Mean    81.27778      Adj R-sq    0.4528
C.V.              24.57069

Note from the R2 that we are accounting 
for 55% of the variability. Is this good or 
bad?  
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Example 1 (continued)

The R2 value is now called the coefficient 
of multiple determination (instead of the 
coefficient of determination). 
Its square root (r) is a correlation 
coefficient.  It is the correlation between 
the observed and predicted values of Yi.  
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Example 1 (continued)

Note that the next two sections of output 
are the "Parameter estimate" sections.  
This section is greatly expanded from the 
SLR discussed previously.  It includes a 
number of new diagnostics that are 
needed to interpret and compare the 
various independent variables.  
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Example 1 (continued)
The first columns in the "Parameter 
estimate" section are somewhat familiar.  
They include the actual estimates, 
standard errors (used for t-test and 
confidence intervals) and a t-test against 
the value zero (H0: βi = 0).  

Parameter Estimates
               Parameter     Standard    T for H0:
Variable  DF    Estimate        Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710
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Example 1 (continued)
Parameter Estimates
               Parameter     Standard    T for H0:
Variable  DF    Estimate        Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710

 From this section we can get our model,
Yhat=43.7+1.78X1-0.0834X2+0.161X3

We also have our first tests of the 
variables (against an hypothesized value 
of zero).  We see that only X1 and the 
intercept are different from zero.  
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Example 1 (continued)
               Parameter     Standard    T for H0:
Variable  DF    Estimate        Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710

This is a common calculation an often a 
prime objective of the regression. 
By default SAS does the tests of each 
regression coefficient against zero.  
However, is a test of a parameter against a 
value other than zero.  This can be done with 
the SAS test statement (later) or by hand.   
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Example 1 (continued)
               Parameter     Standard    T for H0:
Variable  DF    Estimate        Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710

The hypothesis tested is; 
H0: Parm est = Hypothesized value and is 
calculated as 

t = (Parm est - Hypothesized value) / 
stderror.  For example, test H0: β1 = 0
t = (1.78 - 0)/ 0.538 = 3.319 > 2.145
So reject H0:, conclude results are NOT 
consistent with the null hypothesis.      
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Example 1 (continued)
Parameter Estimates
               Parameter     Standard    T for H0:
Variable  DF    Estimate        Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710

A confidence interval, say on β1, would 
be calculated as (using α value of 0.05)

parm est(b1) ± t(α/2, 14 d.f.)*std error
= 1.785 ± 2.145*0.5377 
P(0.63154 ≤ β1 ≤ 2.93802) = 0.95  
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Example 1 (continued)

Note that confidence intervals are 
available from SAS PROC REG 
and that the alpha value can be specified
I did not specify "CLB" here, but it is 
covered in the "ALL" option.  

                                          Parameter Estimates
                    Squared         Squared
               Semi-partial         Partial                Variance
Variable   DF  Corr Type II    Corr Type II   Tolerance   Inflation     95% Confidence Limits
Intercept   1             .               .           .           0     5.02414       82.28026
X1          1       0.35466         0.44040     0.78692     1.27077     0.63154        2.93802
X2          1       0.00128         0.00284     0.72432     1.38060     -0.97929        0.81249
X3          1       0.06703         0.12947     0.89915     1.11216     -0.07837        0.40063
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Ex 1: New Statistics
There are also some new statistics in the 
parameter estimate section.  
Parameter Estimates                   Standardized
Variable     Type I SS    Type II SS      Estimate
INTERCEP        118909   2342.896465    0.00000000
X1         5957.022495   4394.149832    0.67133970
X2           18.646037     15.897886   -0.04208963
X3          830.442921    830.442921    0.27302912

The Type I SS and Type II SS we know about from 
our discussion of extra SS. These are not tested 
in PROC REG, but we can get tests from PROC 
GLM.  For the moment we will use the t-tests just 
discussed, since F tests of these SS are identical 
to the t-test of Ho: βi = 0.  
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Ex 1: New Statistics (continued)
As a reminder, Type I SS are

SSX1
SSX2 | X1
SSX3 | X1, X2 

and type II or III SS (same for reg) are
SSX1 | X2, X3 
SSX2 | X1, X3
SSX3 | X1, X2 

Note that the last variable is the same for 
both types.  This is always true.  
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Ex 1: New Statistics (continued)

Do an F test of these, first calculate the 
Mean Square (all have one d.f.), and then 
divide the MS by the MSError, which in 
this example has 14 d.f.
The result would then be compared to 
tabular values from the F table with 1, 14 
d.f. 
This can also be used to test each 
parameter estimate against zero.  
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Ex 1: New Statistics (continued)

Another note on the types of SS.  The 
Sequential SS (Type I) will always sum to 
the SSRegression (not counting the 
intercept).  
The Partial SS (Type II or III) may sum to 
less than the SSRegression or to more 
than the SSRegression (not counting the 
intercept). 
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Ex 1: New Statistics (continued)

In this case the SSRegression is 
6806.11145. 

The Type I SS sum exactly to this value
5957.022+18.646+830.443=6806.111  
The Type II SS sum to less than the 
SSRegression
4394.150+15.898+830.443=5240.491 
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Ex 1: New Statistics (continued)
Another new statistic here is the 
standardized regression coefficient.
Parameter Estimates                   Standardized
Variable     Type I SS    Type II SS      Estimate
INTERCEP        118909   2342.896465    0.00000000
X1         5957.022495   4394.149832    0.67133970
X2           18.646037     15.897886   -0.04208963
X3          830.442921    830.442921    0.27302912

When we see the word "standardized" we 
are usually talking about some 
transformation of a variable to a mean of 
zero and variance of 1 (one). 
This is like a Z or t score.  
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Ex 1: New Statistics (continued)

The standardization is applied to the raw 
data, the original Yj and Xij values.  

Yj = standardized Yj value = (Yj -⎯Y) / SY   
Note that SY denotes the standard deviation 
and not the standard error.  

The X'X, X'Y and Y'Y matrices are 
calculated with these values, and the 
(X'X)-1 matrix is a correlation matrix. 
For simpler calculations see last pages of 
handout.   
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Ex 1: New Statistics (continued)

Standardization is sometimes used to put 
variables on the same scale.  
For example, if our slope (Y units per X 
unit) is meaningful in terms of the 
original scale (e.g. mg phosphorus 
available per mg in the soil) we may want 
to keep the original scale for 
interpretative purposes.  
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Ex 1: New Statistics (continued)
However, in other cases our scales may 
be arbitrary.  For example, if we are trying 
to predict a Freshman's first semester 
college performance (scale 0 to 4) from 
SAT (scale 0 to 36), ACT verbal (scale 200 
to 800) and High School GPA (scale 0 to 
4), then the arbitrary scales may confuse 
and complicate the study.  We could 
"standardize" the 4 variables so that all 
have a mean = 0 and variance = 1.  
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Ex 1: New Statistics (continued)

Since the original scales are arbitrary we 
loose little by doing this.  The resulting 
regression would have regression 
coefficients that are without scale, and 
whose "relative size" would give an 
indication of the "relative importance" or 
"relative impact" of the variable in 
determining the value of the predicted 
value.  
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Ex 1: New Statistics (continued)

When standardized, the bigger the value 
of the regression coefficient, the more 
important the variable.  
These are the "standardized regression 
coefficients, and they are used 
extensively in some disciplines.  
In your discipline, take note of the 
statistics presented in the literature.  
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Ex 1: New Statistics
Parameter Estimates                     Standardized

Variable     Type I SS    Type II SS      Estimate
INTERCEP        118909   2342.896465    0.00000000
X1         5957.022495   4394.149832    0.67133970
X2           18.646037     15.897886   -0.04208963
X3          830.442921    830.442921    0.27302912

The standardized regression coefficients 
indicate that the X1 variable is the most 
"important", while the X2 variable is the 
least "important".  
Note that tests of the Type II SS (or t-tests 
of the slopes) would give similar results 
in this case. 
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Ex 1: New Statistics (continued)

More new statistics.  The second section 
of the "Parameter estimates" provides 
some squared "correlations".  
Parameter Estimates
                   Squared       Squared       Squared       Squared
              Semi-partial       Partial  Semi-partial       Partial
Variable  DF   Corr Type I   Corr Type I  Corr Type II  Corr Type II
INTERCEP   1     .             .             .             .        
X1         1    0.48080787    0.48080787    0.35466406    0.44039930
X2         1    0.00150497    0.00289868    0.00128316    0.00283921
X3         1    0.06702736    0.12947464    0.06702736    0.12947464

This is another measure of "importance" 
for each variable.  
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Ex 1: New Statistics (continued)
Recall the R2 is the SSModel / SSTotal 
(both corrected).  However, since we are 
not very interested in the overall model 
could we get an R2 type statistics for each 
variable?  Of course we could, in fact 
there are four.  
What would you imagine the individual R2 
values to be?  
You might guess the Type I or Type II SS 
divided by the total.  
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Ex 1: New Statistics (continued)

Congratulations, you just invented the 
"Squared semi-partial correlation Type I" 
and the "Squared semi-partial correlation 
Type II".  

Squared semi-partial correlation TYPE I = 
SCORR1 =  SeqSSXj / SSTotal 
Squared semi-partial correlation TYPE II = 
SCORR2 =  PartialSSXj / SSTotal
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Ex 1: New Statistics (continued)
But think about the Extra SS we talked 
about earlier.  When variables go into a 
model they account for some of the 
SSTotal, and that fraction of the SS is not 
available to later variables, or it may even 
enhance the SS accounted for by later 
variables.  
Doesn't it seem that we should look at 
the SS available to a variable when we 
consider how much SS it accounts for?
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Ex 1: New Statistics (continued)

This is more in keeping with the concept 
of "Partial" SS we talked about earlier.  
So, when a variable (say X1) enters the 
model after the other variables, what SS 
are available to it?  
Obviously, the SS it accounted for was 
available (SSX1|X2,X3).  And the SSError 
was also available, though not accounted 
for. 
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Ex 1: New Statistics (continued)

So, the SS available to each variable is 
the part it accounts for (SSXi|all other 
variables), plus the part no variable 
accounts for (SSError).  
If we use this as the available SS to be 
accounted for, instead of the SSTotal, we 
have the "Squared Partial correlations".  
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Ex 1: New Statistics (continued)

These are calculated as 
Squared partial correlation TYPE I = 
PCORR1 =  SeqSSXj / (SeqSSXj + SSError*)

* Note that for sequential SS the error 
changes as each variable enters.  This 
must be taken into account.  

Squared partial correlation TYPE II = 
PCORR2 =  PartialSSXj / (PartialSSXj + 
SSError)  
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Ex 1: New Statistics (continued)
So how are these used?  
The interpretation is similar to that of the 
R2, except that it is a fraction for each 
variable.  
The ones that make the most sense to me 
are 

For models using the Type I SS the Squared 
semi-partial correlation TYPE I
For models using the Type II SS, the 
Squared partial correlation TYPE II

07a_Multiple Regression Introduction 60



Ex 1: New Statistics (continued)

Since the Type I SS sum to the SSReg, 
the Semi-partial R2 Type I will sum to the 
overall R2.  
Since the Partial SS may sum to more or 
less than the SSReg, and the 
denominator is not the SSTotal, the sum 
of these partial R2 values is 
unpredictable.  
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Multicollinearity
One last statistic to evaluate variables.  
There is a problem that exists in multiple 
regression when two independent 
variables are very highly correlated.  The 
problem is called multicollinearity. 

At one extreme of this phenomenon is the 
case where two independent variables are 
perfectly correlated.  This results in 
"singularity", and the X'X matrix that cannot 
be inverted.   
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Multicollinearity (continued)

To illustrate the problem, take the 
following data set.  

Y X1 X2
1 1 2
2 2 3
3 3 4
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Multicollinearity (continued)

If entered in PROC REG, SAS will report 
problems and will fit only the first 
variable, since the second one is 
perfectly correlated.  Suppose we did 
want to fit both parameters for X1 and X2, 
what bi values could we get.  The table 
below shows some possible values for b1 
and b2.  

07a_Multiple Regression Introduction 64



Multicollinearity (continued)

b0 b1 b2
0 1 0
-1 0 1
99 100 -99

999 1000 -999
-101 -100 101

-1001 -1000 1001

Acceptable values of b0, b1 and b2.  
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Multicollinearity (continued)
There are an infinite number of solutions 
when singularity exists, and that is why 
no program can, or should, fit the 
parameter estimates.  
But suppose that I took and added to one 
of the Xi observations the value 
0.0000000001.
Now the two independent variables are 
not perfectly correlated!!!  SAS will report 
no error and will give a solution. 
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Multicollinearity (continued)
How good is that solution.  Remember 
how the bi values could go way up or way 
down as long as they were balanced by 
the other?  

b0 b1 b2
0 1 0
-1 0 1
99 100 -99
999 1000 -999
-101 -100 101
-1001 -1000 1001
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Multicollinearity (continued)
Typically when very high correlations 
exist (but NOT perfect correlations) small 
changes in the data result in large 
fluctuations of the regression 
coefficients. 
Basically, under these conditions, the 
regression coefficient estimates are 
useless.  
Also, the variance estimates are inflated.  

07a_Multiple Regression Introduction 68



Multicollinearity (continued)
So how do we detect these problems?  

First, look at the correlations, the simple 
correlations among the Xi variables 
produced by the PROC REG in the 
summary statistics section.  

Correlation
CORR     X1      X2      X3       Y
X1   1.0000  0.4616  0.1520  0.6934
X2   0.4616  1.0000  0.3175  0.3545
X3   0.1520  0.3175  1.0000  0.3617

07a_Multiple Regression Introduction 69



Multicollinearity (continued)
Large correlations (usually > 0.9) can 
indicate potential multicollinearity 
problems.
However, to detect Multicollinearity 
these statistics alone are not enough.  It 
is possible that there is no pairwise 
correlation, but that some combination 
of Xi variables correlates with some other 
combination.  So we need another 
statistic to address this.  
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Multicollinearity (continued)
The Variance Inflation Factor (VIF) is the 
statistic most commonly used to detect 
this problem.  

                        Variance
Variable  Tolerance    Inflation
INTERCEP   .          0.00000000
X1        0.78692352  1.27077152
X2        0.72432171  1.38060199
X3        0.89915421  1.11215627
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Multicollinearity (continued)

VIF values over 5 or 10, or a mean of the 
VIF values much over 2 indicate potential 
problems with multicollinearity.  
Tolerance is just the inverse of the VIF, 
so as VIF go up, Tolerance goes down.  
Both can be used to detect 
multicollinearity.  We will ignore 
Tolerance.  
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Multiple Regression

So, the multiple regression differs from 
the SLR in that it has several variables.  
We need new statistics to examine 
parameter estimates from these 
variables, and to determine if there are 
problems among the variables.  
I will collectively refer to these as the 
"variable diagnostics".  
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Multiple Regression (continued)
Variable diagnostics include,

The partial regression coefficients and their 
tests.  
The standardized partial regression 
coefficient (note also partial).
The squared partial and semi-partial 
correlation values 
The VIF values 

07a_Multiple Regression Introduction 74



Additional output

The variances and covariances of the 
regression coefficients are given by 
(X'X)-1.  This produces the 
Variance-Covariance matrix.  

Covariance of Estimates
COVB          INTERCEP            X1            X2            X3
INTERCEP  324.36769134  0.7651495821  -4.545863489  -0.974950169
X1        0.7651495821  0.2891164632   -0.09904623   -0.00038649
X2        -4.545863489   -0.09904623  0.1744779464  -0.013158898
X3        -0.974950169   -0.00038649  -0.013158898  0.0124691254
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Additional output (continued)

Another section of interest is the section 
called the "Sequential Parameter 
Estimates". 
This section gives the estimates of the bi 
sequentially as each variable is entered.  
We are rarely interested in the sequential 
SS or the sequential parameter estimates 
themselves.  
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Additional output (continued)
However, recall that multicollinearity can 
cause the regression coefficients to 
fluctuate greatly.  Examining the 
Sequential Parameter Estimates for large 
fluctuations as variables enter is another 
indicator of multicollinearity.  

Sequential Parameter Estimates
    INTERCEP             X1             X2             X3
81.277777778              0              0              0
59.258958792   1.8434360081              0              0
56.251024085   1.7897741162     0.08664925              0
43.652197791   1.7847796802   -0.083397057    0.161132691
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Additional output (continued)

The last section of interest related to the 
variables is the output from the 
requested TEST statements.  
TEST X1=2; TEST X1=X2=X3; 
SAS will conduct these tests and provide 
F tests.  Results are the same as t-tests 
for the same hypotheses for one degree 
of freedom tests.   However, F tests can 
also conduct joint tests.  
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Additional output (continued)
There are several tests provided 
automatically by SAS.  
Of course, the tests of the individual 
regression coefficients against zero. 
And the test of the model.  This tests the 
hypothesis Ho: β1 = β2 = β3 = 0, which is the 
same as the joint test Ho: β1 =0, β2 =0, β3 = 
0.  Note that 3 parameters are tested and 
this is a 3 d.f. test.   
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Additional output (continued)
This last test (of the full model) is not the 
same as the test Ho: β1 = β2 = β3.  This is 
actually equivalent to the test Ho: β1 = β2 , 
β2 = β3 which is a 2 d.f. test.  This test was 
requested in SAS with the following 
result.  
TEST X1=X2=X3;  

Test 2 Results for Dependent Variable Y
                                Mean
Source             DF         Square    F Value    Pr > F
Numerator           2     1760.86020       4.42    0.0326
Denominator        14      398.82140
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Additional output (continued)
The usual test of interest are tests of the 
individual regression coefficients against 
an hypothesized value of zero.  These 
tests are provided automatically by SAS.

Ho: β1 = 0  
Ho: β2 = 0  
Ho: β3 = 0  

Variable  DF    Estimate    Std Error   Parameter=0  Prob>|T|
INTERCEP   1   43.652198  18.01021075         2.424    0.0295
X1         1    1.784780   0.53769551         3.319    0.0051
X2         1   -0.083397   0.41770557        -0.200    0.8446
X3         1    0.161133   0.11166524         1.443    0.1710
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Additional output (continued)
It is not unusual to want a test of some 
hypothesized value other than zero.  This 
can be requested with a test statement.  
for example, TEST X1=2;
 Ho: β1 = 2 

Test 1 Results for Dependent Variable Y
                                Mean
Source             DF         Square    F Value    Pr > F
Numerator           1       63.89578       0.16    0.6950
Denominator        14      398.82140
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Multiple Regression

This concludes the "variable diagnostic" 
section of notes.  The observation 
diagnostics are in Part 2 of this series of 
slides.  
An Example of GLM output is also 
included in the second section.  
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