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Curvilinear Regression

As the name implies, these are 
regressions that fit curves.  
However, the regressions we will discuss 
are also linear models, so most of the 
techniques and SAS procedures we have 
discussed will still be relevant.  
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Curvilinear Regression (continued)
We will discuss two basic types of 
curvilinear model.  

The first are models that are not linear, but that 
can be "linearized" by transformation.  These 
models are referred to as "intrinsically linear", 
because after transformation they are linear, 
often SLR. 
Later we will cover polynomial regressions.  
These are an extraordinarily flexible family of 
curves that will fit almost anything.  
Unfortunately, they rarely have a good, 
interpretation of the parameter estimates. 
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Curvilinear Regression (continued)

Intrinsically linear models
These are models that contain some 
transformed variable, logarithms, inverses, 
square roots, sines, etc.  
We will concentrate on logarithms, since 
these models are some of the most useful. 

What is the effect of taking a logarithm of 
a dependent or independent variable?  
For example, instead of Yi=b0+b1Xi+ei, fit 
log(Yi)=b0+b1Xi+ei  
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Curvilinear Regression (continued)

If we fit  log(Yi) = b0 + b1Xi + ei  
Then the original model, before we took 
logarithms, must have been Yi=b'0expb1Xiei 

Where "exp" is the base of the natural 
logarithm (2.718281828) 

This model is called the "Exponential 
Growth model" if b1 is positive, or the 
exponential decay model if it is not.  
It is used in the biological sciences to fit 
exponential growth (+b1) or mortality (-b1).  
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Curvilinear Regression (continued)

Exponential 
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Curvilinear Regression (continued)

Other examples of curvilinear models. 
log(Yi = b0Xi

b1ei)  produces 
log(Yi)=b0+b1log(Xi) + log(ei)

This model is used to fit many things, 
including morphometric data, 
A model with an inverse (1/Xi) will fit a 
"hyperbola", with it's asymptote.  

Yi = b0 + b1(1/Xi) + ei  
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Curvilinear Regression (continued)

Power 
model Yi b0Xi
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Curvilinear Regression (continued)
Hyperbolic model: Yi = b0 + b1(1/Xi) + ei   

note that b0 fits the asymptote 

Hyperbolic curves
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Curvilinear Regression (continued)

These are a few of many possible 
curvilinear regressions.  Models 
including power terms, exponents, 
logarithms, inverses, roots, and 
trigonometric functions fit may be 
curvilinear. 
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Curvilinear Regression (continued)

However, not all are curves can be fitted 
by linear models with transformations.  
Some are nonlinear, and require 
nonlinear curve fitting techniques.  
For example,  

Yi = b0Xi
b1ei is curvilinear  

Yi = b0Xi
b1+ei is nonlinear 

Yi = b0 + b1Xi + b2X2
i + ei is linear (polynomial) 

Yi = b0 + b1Xi + b2Xi
b3 + ei is nonlinear 

05s-Slr-Curvilinear-Trees 11



Curvilinear Regression (continued)

Note that Yi = b0Xi
b1ei has an error 

multiplied by Xi.  This is interesting 
because when the error is multiplied by 
the independent variable, the variance 
about the regression line should appear 
to increase as Xi increases.  
The log transformation (of Yi) should 
remove this nonhomogeneous variance.  
This is not true for the log transformation 
of Xi.   
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Curvilinear Residual Patterns

Transformations of Yi, like log 
transformations, will affect homogeneity 
of variance.  The raw data should actually 
appear nonhomogeneous.  
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Curvilinear Residual Patterns 
(continued)

Transformations of Xi will not. 
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Curvilinear Residual Patterns 
(continued)

Polynomials assume homogeneous 
variance and will not adjust variance.    
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Curvilinear Regression Examples

Air speed example.  
A small example from The Science of 
Flight by Peter P. Wagener, Am Sci, 
volume 74,(3),May-June 1986, page 274. 
The author fitted a quadratic model to 
this data (we will later).  However, many 
examples of technological development 
over time follow an "exponential" model.  
So, we will fit an exponential model to 
this example.  
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Curvilinear Regression Examples

Air speed example. 
I digitized the 
following data from 
a graph.  
Like the author, I 
omit values after 
1963 (speed 
changes little once 
jet age reached).   

YEAR SPEED AIRCRAFT
1926 108 Ford 5-AT
1932 150 247D
1935 179 DC-3
1939 200 307 Strat
1941 204 DC-4
1942 292 L-749
1946 304 DC-6
1947 283 Convair 2
1947 292 377 strat
1950 308 DC-6B
1952 354 DC-7
1954 304 Viscount
1951 458 Comet
1958 404 L188A Ele
1957 550 707/DC-8
1964 500 BAC1-11-2
1963 571 727
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Curvilinear Example 1 (continued)
The exponential is a logical and 
interesting model for this data.  

Dependent Variable: LOGSPEED
                            Sum of         Mean
Source            DF       Squares       Square   F Value     Pr>F
Model              1    3.11456238   3.11456238    145.18   0.0001
Error             15    0.32179173   0.02145278
Corrected Total   16    3.43635410

      R-Square            C.V.       Root MSE        LOGSPEED Mean
      0.906357        2.579479       0.146468             5.678188

Source     DF       Type I SS    Mean Square   F Value     Pr > F
YR          1      3.11456238     3.11456238    145.18     0.0001
Source     DF     Type III SS    Mean Square   F Value     Pr > F
YR          1      3.11456238     3.11456238    145.18     0.0001
                              T for H0:    Pr > |T|   Std Error of
Parameter       Estimate    Parameter=0                Estimate
INTERCEPT    4.750697794          56.04     0.0001     0.08477711
YR           0.041602463          12.05     0.0001     0.00345273
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Curvilinear Example 1 (continued)

For exponential models the slope is 
interpreted as a "proportional" or 
percentage increase per X variable unit.  
To find the percentage value per Xi unit, 
assess EXP(b1) = exp(0.0416) = 1.0425.  
So there was an average annual increase 
in speed of  4.25%.  
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Curvilinear Example 1 (continued)

Note that I adjusted years (YR = YEAR - 
1925) so that 1925 is year zero.  
Otherwise the zero value would be 1 BC.  
Another use of exponential models is to 
calculate doubling times or half-life 
values.  Yi = b0 at time = Xi = 0, so how 
long does it take to get to speed=2b0?  
Set 2b0=b0expb1X', 2=expb1X', log(2)=b1X', 
log(2)/b1 = X', X' = 0.693/0.0416 = 16.67. 
So speed doubled every 16.67 years.     
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Curvilinear Example 1 (continued)

Exponential models.  What can I say?  
Good fit, 
Few d.f. (basically a SLR), 
clear interpretation.   

I like them!  
A note on logarithms.  This model 
requires natural logs.  In SAS the 
function "LOG()" gives natural logs 
(LOG10 gives log base 10).  In EXCEL the 
natural log function is "LN()".   
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Curvilinear Example 2

Remember our SLR example about the 
amount of wood harvested from trees, 
predicted on the basis of DBH (diameter 
at breast height)?  
Remember that it looked a little curved, 
and maybe even had 
NONHOMOGENEOUS variance? 
Let's take another look at that model.  
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Curvilinear Example 2 (continued)

Typically, morphometric relationships 
(between parts of an organism) are best 
fitted with Log(Y),Log(X) models. 

Fish length - scale length
Fish total length - fish fork length
Crab width - crab length
Fish length - fish weight, etc.    

Here we have tree diameter and tree 
weight.  Lets try a log-log model (using 
natural logs).   
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Curvilinear Example 2 (continued)

Since we are fitting a linear measurement 
to a volumetric or weight measurement, I 
expect the following relationship to 
apply.  

1 gm = 1 c3, for the metric system if the 
material has the same density as water 
(specific gravity = 1).  

In other words, I expect 
Wood weight = b0(wood length)3

log(Wood weight) = log(b0) + 3(wood length)
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Curvilinear Example 2 (continued)

Therefore, I will test the coefficient of 
DBH to see if it equals 3.  
Results for the SLR were, 

Analysis of Variance     Sum of         Mean
Source      DF      Squares       Square      F Value     Prob>F
Model        1  6455979.821  6455979.821      433.487     0.0001
Error       45 670190.73220  14893.12738
C Total     46 7126170.5532                 (R-square = 0.9060)

Parameter Estimates
                Parameter      Standard    T for H0:               
Variable  DF     Estimate         Error   Parameter=0    Prob>|T|
INTERCEP   1  -729.396300   55.69366336       -13.097      0.0001
DBH        1   178.563714    8.57640103        20.820      0.0001  
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Curvilinear Example 2 (continued)

Reasons for concern (of model 
adequacy) were the large negative 
intercept, low R2 and residual plot.  
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Curvilinear Example 2 (continued)

The residual plot shows possible 
curvature and nonhomogeneous variance.  
Tests of normality were not a cause of 
concern.  From SAS version 8, we get.  
Shapiro-Wilk       W     0.973389    Pr < W      0.3544
Kolmogorov-Smirnov  D     0.084574    Pr > D     >0.1500
Cramer-von Mises    W-Sq  0.044081    Pr > W-Sq  >0.2500
Anderson-Darling    A-Sq  0.354877    Pr > A-Sq  >0.2500

Now lets look at the log-log model results 
(called a "power model" in some 
disciplines).  
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Curvilinear Example 2 (continued)
PROC REG output.  Good fit, higher R2. 

                             Analysis of Variance
                                    Sum of           Mean
Source                   DF        Squares         Square    F Value    Pr > F
Model                     1       35.94979       35.94979    1236.37    <.0001
Error                    45        1.30846        0.02908
Corrected Total          46       37.25825

Root MSE              0.17052    R-Square     0.9649
Dependent Mean        5.49466    Adj R-Sq     0.9641
Coeff Var             3.10337

                        Parameter Estimates
                     Parameter       Standard
Variable     DF       Estimate          Error    t Value    Pr > |t|
Intercept     1        0.55219        0.14275       3.87      0.0004
ldbh          1        2.79854        0.07959      35.16      <.0001  

Note that this line will go through the 
origin, no problem there.  Yi=b0Xi

b1ei
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Curvilinear Example 2 (continued)

The test of the slope against 3
Test 1 Results for Dependent Variable lweight
                      Mean
Source        DF    Square  F Value    Pr>F
Numerator      1   0.18629     6.41  0.0149
Denominator   45   0.02908

Shows a significant difference, but not 
too far off.  
So how about the residual plot?  It 
showed curvature and nonhomogeneous 
variance for the linear model.  
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Curvilinear Example 2 (continued)
Residual plot for the log-log (power model).

                        Plot of le*Dbh.  Legend: A = 1 obs, B = 2 obs, etc.
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Curvilinear Example 2 (continued)

Residual from the transformed model were 
also tested for normality. 

Tests for Normality
Test                  --Statistic---    -----p Value------
Shapiro-Wilk          W     0.979294    Pr < W      0.5634
Kolmogorov-Smirnov    D     0.128993    Pr > D      0.0483
Cramer-von Mises      W-Sq  0.069887    Pr > W-Sq  >0.2500
Anderson-Darling      A-Sq  0.396238    Pr > A-Sq  >0.2500

The hypothesis of normality is not rejected 
for these results.  

05s-Slr-Curvilinear-Trees 31



Curvilinear Example 2 (continued)
The residual plot for the log-log model 
appears to show no curvature, no 
nonhomogeneous variance, no obvious 
outliers, and no significant departure 
from the normal distribution.  
In short, it is much improved, and 
probably fits better than the linear model.  
And it is interpretable.  
Geometrically, the model should be 

Weight = C*π*(specific gravity)*(D/2)2*H 
where C=1 for a cylinder and 1/3 for a cone.
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Curvilinear Regression Notes 
and Summary

For transformed models,
The usual regression assumptions must be 
met for the transformed model, not the raw 
data (homogeneity, normality, etc.).  
Estimates, hypothesis tests and confidence 
intervals would be calculated for the 
transformed model.  The estimates and 
limits can then be detransformed.  
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Curvilinear Regression Summary 
(continued)

A wide range of biometrics situations call 
for established curvilinear models.  
These would include, exponential growth, 
mortality, morphometric models, 
instrument standardization, some other 
growth models (power models and 
quadratics have been used), recruitment 
models.  
Check the literature in your field to see 
what models are used.  
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