EXST7015

Numerical Example of a Simple Linear Regression

Simple Linear Regression

- Our analyses will be done in SAS. Other, simpler options, such as EXCEL, work well for simple linear regression, but not other option will cover all of the analyses with all of the options that we want to cover this semester.
- If you are not familiar with SAS, see information available on my EXST7005 page, and talk to the TA about getting up to speed.

Numerical Example

- The example used is from your textbook. It is a data set taken from 47 trees. Each tree was measured for diameter, height, weight of harvestable wood and other values.
- Our objective will be to predict the weight of harvestable wood using just the diameter. The diameter variable is measured about 4 feet off the ground and is called Diameter at Breast Height (DBH).

SAS Programming

- The SAS program. I will presume you are familiar with the SAS data step. I will discuss it briefly only for this first example.
- SAS Statements - all SAS statements end in a semicolon;
- Comments - comments are statements that start with an asterisk. They do nothing in the program, they are included only for the purpose of documenting the program.

SAS Programming (continued)

- My Simple Linear Regression (SLR) example starts with the comments,

-*** Data from Freund \& Wilson (1993) ***;
-*** TABLE 8.24 : ESTIMATING TREE WEIGHTS ***;

- This is for documentation purposes only. It does not affect the program.

SAS Programming (continued)

Options - options can be specified to modify output appearance. The option statement I usually use is,

- options ps=61 ls=78 nocenter nodate nonumber;
- This option creates a page size (ps) of 61 lines (use 54 for the lab)
- a line size of 78 character columns, and
- suppresses the centering of output and printing of the date and page numbers.

SAS Programming (continued)

The DATA step. All our programs will include a DATA section. In this section the data to be analyzed is entered into the SAS system and, if necessary, modified for analysis.
-data one;

SAS Programming (continued)

- A second statement informs SAS that the data is included in the program (CARDS)
- and that if there are missing values the system should NOT to the next line to get the data (MISSOVER).
-infile cards missover;

SAS Programming (continued)

- The next statement in my program is a TITLE statement. Up to 9 titles can be active (TITLE1 through TITLE9) and once set are printed at the top of each page.
- Setting a new title, say TITLE3, would not affect lower numbered titles (TITLE1 and TITLE2) but would delete all higher numbered titles (TITLE4 ...).

SAS Programming (continued)

- The TITLE statement ends in a semicolon as usual, and the text to be used a the title is enclosed in single quotes.
-TITLE1 'Estimating tree weights from other morphometric variables';

SAS Programming (continued)

- The input statement. Along with the DATA statement, this is an important statement. It names the variables to be used, tells SAS what type of variables they are (numeric or alphanumeric) and gets the data into the SAS data set.
-input ObsNo Dbh Height Age Grav Weight ObsID \$;

SAS Programming (continued)

- Note that only one variable in the list is followed by a $\$$. This will cause SAS to assume that all variables are numeric except the variable called OBSID.
- The variable OBSID is one I created by adding to each observation a different letter. The first line got an "a", the second a "b", etc. The 26th observation got a " z " and the 27th an "A", etc. This was done to have a way of distinguishing each observation.

SAS Programming (continued)

- The LABEL statement provides a way of identifying each variable. It is optional, but if present will be used by SAS in a number of places to identify the variables.
- label ObsNo = 'Original observation number'
- Dbh = 'Diameter at breast height (inches)'
> etc. ...;
- I have deactivated the labels by making them a comment statement.

SAS Programming (continued)

- If data must be modified, it is done in the data step after the INPUT statement. I have two statements that create logarithms. These are not used in the first analysis, but will be used later in the semester.
-lweight = log(weight);
-ldbh = log(DBH);
- These statements create two new variables (LWEIGHT and LDBH) that are the natural logs of the original variables.

SAS Programming (continued)

- Two last statements before the data. The CARDS statement tells SAS that the data step is done and data follows. The RUN statement tells SAS to process all information that it has so far and output any messages about the analysis to the LOG.
-cards; run;
- Note that two statements can occur on the same line.

SAS Programming (continued)

- The SAS DATA step is now complete. The data will be entered into the SAS system and processing will continue.
- The rest of the statements in this program are procedures (PROCs) and associated statements.

SAS Programming (continued)

- I will briefly discuss some of these statements. For most of the semester we will concentrate on the PROCs that actually do statistics, such as REG, GLM, LOGISTIC, ANOVA, and MIXED.

SAS Programming (continued)

- The first PROC is, -proc print data=one; TITLE2 'Raw data print'; run;
- This PROC causes the data to be printed with the second title line added as
"Raw data print".

SAS Programming (continued)

- Data list from PROC PRINT,
-EXST7015: Estimating tree weights from other morphometric variables
-Raw data print

-	Obs						Obs		
- Obs	No	Dbh	Height	Age	Grav	Weight	ID	lweight	ldbh
1	1	5.7	34	10	0.409	174	a	5.15906	1.74047
- 2	2	8.1	68	17	0.501	745	b	6.61338	2.09186
- 3	3	8.3	70	17	0.445	814	C	6.70196	2.11626
- 4	4	7.0	54	17	0.442	408	d	6.01127	1.94591
- 5	5	6.2	37	12	0.353	226	e	5.42053	1.82455
- 6	6	11.4	79	27	0.429	1675	f	7.42357	2.43361
- 7	7	11.6	70	26	0.497	1491	g	7.30720	2.45101
- 8	8	4.5	37	12	0.380	121	h	4.79579	1. 50408
- . -4	44	4.0	38	13	0.407	76	R	4.33073	1.38629
- 45	45	8.0	61	13	0.508	614	S	6.41999	2.07944
- 46	46	5.2	47	13	0.432	194	T	5.26786	1.64866
- 47	47	3.7	33	13	0.389	66	U	4.18965	1.30833

SAS Programming (continued)

- Notice that this is a TITLE2, so any previous title1 is kept.
- Also notice I usually follow PROCs with a RUN statement. This causes the procedure to be executed and any comments regarding the statement are placed in the LOG prior to the next PROC.

SAS Programming (continued)

- The next PROC is a PLOT. -options ls=111 ps=61; proc plot data=one; plot weight*Dbh=obsid; - TITLE1 'Scatter plot'; run; -options ps=256 ls=132;
- It is surrounded by option statements. Although I usually like a large page size of (256), I don't want the plot to cover 256 lines, so I put the page size to 61 for the plot, and then reset it to $\mathbf{2 5 6}$ for subsequent output.

SAS Programming (continued)

- The plot is for weight on DBH. Notice the "=ObsID" at the end of the plot statement. This will cause SAS to plot a single character (the ObsID I created) as a symbol representing each observation in the plot. I do this to be able to distinguish between the observations in the plot.
- Output from the PLOT statement follows.

SAS Programming (continued)

SAS Programming (continued)

- The means statement is often used to examine variables and determine the number of observations of each variable, its minimum and maximum.
-proc means data=one n mean max min var std stderr; TITLE1 'Raw data means'; var Dbh Height Age Grav Weight; run;

SAS Programming (continued)

- This has limited utility for regression analysis.
-

-Raw data means
-

- Variable	Label	N	Mean	Maximum
-DBH	Diameter at breast height (inches)	47	6.1531915	12.1000000
- HEIGHT	Height of the tree (feet)	47	49.5957447	79.0000000
-AGE	Age of the tree (years)	47	16.9574468	27.0000000
- GRAV	Specific gravity of the wood	47	0.4452979	0.5080000
-WEIGHT	Harvest weight of the tree (lbs)	47	369.3404255	1692.00

- You might use it to look for outliers, or to get the range of values for a plot.

SAS Programming (continued)

- The SAS UNIVARIATE procedure is very useful in regression analysis. However, the application to the RAW variables is not very useful.
- proc univariate data=one normal plot;
- TITLE1 'Raw data Univariate analysis';
var Weight Dbh; run;

SAS Programming (continued)

- We will be interested in using this PROC to evaluate normality. We will be ESPECIALLY interested in the tests, $\begin{array}{llllr}\text {-Shapiro-Wilk } & \text { W } & 0.710878 & \text { Pr }<W & <0.0001 \\ \text {-Shapiro-Wilk } & \text { W } & 0.89407 & \text { Pr }<W & 0.0005\end{array}$
- We will also be interested in other tools to evaluate normality (STEM \& LEAF, BOX PLOT, NORMAL PROBABILITY PLOT), but NOT FOR THE RAW DATA for either variable (X or Y).

SAS Programming (continued)

- Note that these tests of normality are not useful.
- We will be assuming normality and testing for normality, but not on the original variables.
- We will later be testing the Deviations or Residuals!!! These are the appropriate tests of normality, not the tests of the original variables!!!

Regression analysis

- As far a regression is concerned, the preceding material is ancillary, used to prepare or enhance our analysis.
- The important information for regression will be provided by PROC REG or PROC GLM.
- 84
- 85
- 86
-
- 87
- 88
- 89
-NOTE: 47 observations read.
-NOTE: 47 observations used in computations.
proc reg data=one LINEPRINTER; ID ObsID DBH; TITLE2 'Simple linear regression'; model Weight $=$ Dbh / p xpx i influence clb

Slope:Test DBH = 200;
run; alpha=0.01; *** CLI CLM;

Joint:TEST intercept = 0, DBH = 200;

Regression analysis (continued)

- Additional useful statements that can be added to PROC REG include.

Regression analysis (continued)

- PROC REG Output

- The model is fitted by the statements,
- 84
- 86
-

\because
-Analysis of Variance
-

- Source
- Model
- Error
- Corrected Total -
-Root MSE
- Dependent Mean
- Coeff Var
-
-

- Variable	DF	Parameter Estimate
- Intercept	1	-729.39630
- Dbh	1	178.56371

proc reg data=one LINEPRINTER; ID ObsID DBH; model Weight $=$ Dbh / p xpx i influence clb alpha=0.01; *** CLI CLM;

Regression analysis (continued) - The ANOVA table

-Analysis of Variance
-

- Source
- Model
- Error
- Corrected Total

	Sum of	Mean		
DF	Squares	Square	F Value	Pr > F
1	6455980	6455980	433.49	$<.0001$
45	670191	14893		
46	7126171			

- Supplemental information
-Root MSE 122.03740
R-Square 0.9060
- Dependent Mean
369.34043
Adj R-Sq 0.9039
-Coeff Var 33.04198
- Parameter estimates and tests
-Parameter Estimates

| | | Parameter | Standard | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| " Variable | DF | Estimate | Error | t Value | Pr $>\|t\|$ | 99% Confidence Limits | |
| - Intercept | 1 | -729.39630 | 55.69366 | -13.10 | $<.0001$ | -879.18914 | -579.60346 |
| -Dbh | 1 | 178.56371 | 8.57640 | 20.82 | $<.0001$ | 155.49675 | 201.63067 |

Parameter estimates and tests (continued)

- The parameter estimates are,
- Intercept =-729.396300
- Slope = 178.563714
- Equation: $\mathrm{Y}_{\mathrm{i}}=-729.4+178.6^{*} \mathrm{X}_{\mathrm{i}}$
- Interpretation : The weight starts at -729 when the diameter is zero and increases by 179 pounds for each additional inch in diameter.

Parameter estimates and tests

 (continued)- For a t-test of either parameter against an hypothesized value or a confidence interval on either parameter we would use the standard errors provided by SAS.
- $S_{b 0}=55.69366336$
$-S_{b 1}=8.57640103$

Parameter estimates and tests

(continued)

- A 95\% confidence interval is calculated as, Parameter \pm tvalue*standard error
- The t-value has $n-2=45$ d.f. and can be found in a t-table. For a two tailed interval and a value of $\alpha=0.05$, the t-value is 2.014
- For the slope the estimate is $\mathbf{1 7 8 . 6}$
- The standard error is 8.576
- The confidence interval is
$-178.6 \pm 2.014 * 8.576$
$-P\left(161.328 \leq \beta_{1} \leq 195.872\right)=0.95$

Parameter estimates and tests (continued)

- A 99\% confidence interval is calculated by SAS because the option CLB was requested on the model statement and a value of alpha- 0.01 was specified.
-proc reg data=one LINEPRINTER; ID ObsID DBH;
- TITLE2 'Simple linear regression';
- model Weight = Dbh / p xpx i influence clb

$$
\begin{aligned}
& \text { alpha=0.01; } \\
& \text { Slope:Test DBH }=200 ; \\
& \text { Joint:TEST intercept }=0, \text { DBH }=200 ;
\end{aligned}
$$

Parameter estimates and tests (continued)

- Output with 99\% confidence interval.

"

"	Parameter	
"Variable	DF	Estimate
" Intercept	1	-729.39630
"Dbh	1	178.56371

Standard	
Error	t Value
55.69366	-13.10
8.57640	20.82

Pr $>|t|$
$<.0001$
$<.0001$

99% Confidence Limits	
-879.18914	-579.60346
155.49675	201.63067

Parameter estimates and tests (continued)

- A t-test of an hypothesized value for the slope would be calculated as

Parameter estimates and tests

(continued)

- SAS automatically provides a t-test of each parameter against an hypothesized value of zero, the most common test.
-Parameter Estimates

-		Parameter
- Variable	DF	Estimate
- Intercept	1	-729.39630
- Dbh	1	178.56371

Standard	
Error	t Value
55.69366	-13.10
8.57640	20.82

$$
\begin{array}{r}
\operatorname{Pr}>|t| \\
<.0001 \\
<.0001
\end{array}
$$

99\% Confidence Limits

- Intercept 1 -729.39630
8.57640
20.82
-879. 18914
-579.60346
- T values and P values are
- Intercept : t=-13.097, P value < 0.0001
- Slope : $\mathrm{t}=20.820$, P value <0.0001

Parameter estimates and tests

 (continued)- Interpretation: The slope and intercept differ from zero. Therefore, the line does not pass through the origin, and the line is not "flat", basically the regression line is an improvement over the original flat line fitted by the correction factor.
- Other values may be of interest besides zero. These can be tested by hand, or with at "TEST" statement in SAS.

Parameter estimates and tests

(continued)

- I added an additional, optional, test. I decided to test two specific hypotheses about the regression coefficients.
-87 Slope:Test DBH = 200;
-88 Joint:TEST intercept = 0, DBH = 200;
- SAS provides a mechanism to do this. The statement "TEST DBH = 200;" is added to the program after the model statement. The test outputs the test result (in this program the output follows the list of observation diagnostics).

Parameter estimates and tests (continued)

- Test Slope Results for Dependent Variable Weight
- Source
-Numerator
- Denominator

DF Square
1
45

Mean

93041
14893

F Value
Pr $>\mathrm{F}$
6.25
0.0162

- This tests the hypothesis $\mathrm{H}_{0}: \beta_{\text {Dвн }}=200$, and you can see that it is rejected here. SAS used an F test to test this (more flexible), we would probably use a t-test (computationally and conceptually easier).

Parameter estimates and tests (continued)

Test Joint Results for Dependent Variable Weight

- Source
- Numerator
-Denominator
DF
2
45 Mean

Square	F Value	Pr > F
17479620	1173.67	$<.0001$
14893		

- This tests the second hypothesis, a joint test of the two hypotheses
- $\mathrm{H}_{0}: \beta_{0}=0$ and $\mathrm{H}_{0}: \beta_{\text {DBH }}=200$.
- This is a two degree of freedom test.

Other useful information

- Other useful output from PROC REG includes observation diagnostics, residual plots and the ability to output residuals for testing.
- AS YOU KNOW, WE TEST NORMALITY OF THE RESIDUALS, NOT THE RAW DATA!

Observation diagnostics

- There are a few diagnostics calculated from individual observations that are of interest.
- First the residuals are of interest only for their sign. Long strings of residuals with the same sign can indicate either curvature or a lack of independence.
- Since we don't know what constitutes an overly large residual, these are not very useful for detecting outliers.

Observation diagnostics (continued)

- Another value of interest is the standardized residuals, in SAS the values "STUDENT" and "RSTUDENT".
- These are standardized residuals, and should have a mean of zero and a variance of one. They should follow a t distribution, so that for our example with 45 observations we expect that 99% would be between ± 2.690.

Observation diagnostics (continued)

- The HAT diag values.
- Hat diag is a relative measure of how far an X value is from the center of the X space. A high value indicates an unusual value of X. This is not necessarily bad, but unusual values should be examined for correctness.

Observation diagnostics (continued)

- The HAT diag values (continued).
- The hat diag values will sum to " p ", where p is the number of parameters estimated in the model (2 for SLR).
- The mean of the hat diag values will be p / n, and any values more than twice this value are considered "large". Again, this is not necessarily a problem.

Observation diagnostics (continued)

- Influence diagnostics examine how the regression would change if an observation were removed from the analysis. If an observation is removed an the regression does not change, the observation is not influential. If the regression changes a lot, the observation is very influential.

Observation diagnostics (continued)

- Influence diagnostics (continued)
- DFFITS measures the change in terms of the "fit", as judged by the predicted (Yhat) value. If a point is removed and Yhat changes a lot, the point is influential.
- for small to medium size databases, DFFITS should not exceed 1, while for large databases it should not exceed 2*sqrt(p/n)

Observation diagnostics (continued)

- Influence diagnostics (continued)
- DFBETAS measures the change in terms of the "fit", as judged by changes in b_{0} and b_{1}. If a point is removed and b_{0} or b_{1} change a lot, the point is influential.
- for small to medium size databases, DFBETAS should not exceed 1, while for large databases it should not exceed 2/sqrt(n)

Observation diagnostics

- Look for RSTUDENT values over 2.7 - Look for Hat diag values over 0.04 - Look for DFFITS \& DFBETAS over 1.

Obs	OBSID
1	i
2	U
3	I
4	K
5	p
6	R
7	n
8	Q
9	H
10	w
11	G
12	r
13	h
14	x
15	A
16	T
17	L
18	B
19	F
20	E
21	m
22	v
23	M
24	a
25	k
26	C

Dep Var WEIGHT	Predict		
58.0000	-104.4	162.4	1.3837
66.0000	-68.7106	134.7	1.1368
70.0000	-68.7106	138.7	1.1716
99.0000	-32.9978	132.0	1.1105
60.0000	-15.1414	75.1414	0.6255
76.0000	-15.1414	91.1414	0.7603
84.0000	-15.1414	99.1414	0.8280
89.0000	-15.1414	104.1	0.8705
84.0000	20.5713	63.4287	0.5262
100.0	38.4277	61.5723	0.5102
125.0	38.4277	86.5723	0.7195
74.0000	74.1404	-0.1404	-0.0012
121.0	74.1404	46.8596	0.3871
122.0	74.1404	47.8596	0.3954
194.0	163.4	30.5777	0.2515
194.0	199.1	-5.1350	-0.0422
200.0	199.1	0.8650	0.0071
280.0	234.8	45.1522	0.3709
229.0	252.7	-23.7041	-0.1944
200.0	270.6	-70.5605	-0.5806
209.0	270.6	-61.5605	-0.5061
210.0	270.6	-60.5605	-0.4978
214.0	270.6	-56.5605	-0.4647
174.0	288.4	-114.4	-0.9471
220.0	288.4	-68.4169	-0.5627
296.0	342.0	-45.9860	-0.3773

Hat Diag	Cov H	Ratio	Dffits	INTERCEP Dfbetas
0.0560	1.0176	0.3372	DBH Dfbetas	
0.0510	1.0402	0.2635	0.2450	-0.2656
0.0510	1.0365	0.2716	0.2525	-0.2012
0.0464	1.0378	0.2448	0.2236	-0.1801
0.0442	1.0751	0.1345	0.1216	-0.0968
0.0442	1.0661	0.1634	0.1478	-0.1177
0.0442	1.0610	0.1780	0.1609	-0.1282
0.0442	1.0576	0.1871	0.1692	-0.1347
0.0401	1.0761	0.1076	0.0949	-0.0737
0.0382	1.0748	0.1017	0.0885	-0.0678
0.0382	1.0624	0.1435	0.1247	-0.0955
0.0348	1.0837	-0.0002	-0.0002	0.0001
0.0348	1.0763	0.0735	0.0617	-0.0458
0.0348	1.0760	0.0751	0.0631	-0.0468
0.0278	1.0728	0.0426	0.0315	-0.0207
0.0258	1.0735	-0.0069	-0.0047	0.0029
0.0258	1.0736	0.0012	0.0008	-0.0005
0.0241	1.0651	0.0583	0.0363	-0.0199
0.0234	1.0692	-0.0301	-0.0177	0.0090
0.0228	1.0542	-0.0887	-0.0490	0.0228
0.0228	1.0580	-0.0773	-0.0427	0.0199
0.0228	1.0584	-0.0760	-0.0420	0.0196
0.0228	1.0599	-0.0710	-0.0392	0.0183
0.0223	1.0275	-0.1430	-0.0736	0.0305
0.0223	1.0546	-0.0850	-0.0437	0.0181
0.0214	1.0620	-0.0558	-0.0217	0.0041

Observation diagnostics (continued)

		Dep Var	Predict			Hat Diag	Cov		INTERCEP	DBH
Obs	OBSID	WEIGHT	Value	Residual	Rstudent	H	Ratio	Dffits	Dfbetas	Dfbetas
27	1	342.0	342.0	0.0140	0.0001	0.0214	1.0688	0.0000	0.0000	-0.0000
28	J	224.0	359.8	-135.8	-1.1286	0.0213	1. 0094	-0.1665	-0.0572	0.0043
29	P	238.0	359.8	-121.8	-1. 0094	0.0213	1.0209	-0.1489	-0.0512	0.0038
30	0	297.0	359.8	-62.8424	-0.5163	0.0213	1.0559	-0.0761	-0.0262	0.0020
31	e	226.0	377.7	-151.7	-1. 2648	0.0213	0.9950	-0.1865	-0.0556	-0.0042
32	j	278.0	377.7	-99.6987	-0.8228	0.0213	1.0366	-0.1213	-0.0362	-0.0027
33	u	345.0	431.3	-86.2678	-0.7108	0.0219	1.0452	-0.1063	-0.0169	-0.0175
34	0	313.0	467.0	-154.0	-1.2856	0.0228	0.9942	-0.1962	-0.0133	-0.0500
35	d	408.0	520.5	-112.5	-0.9326	0.0248	1.0314	-0.1488	0.0092	-0.0562
36	D	462.0	592.0	-130.0	-1.0829	0.0290	1.0220	-0.1870	0.0400	-0.0963
37	y	539.0	645.5	-106.5	-0.8857	0.0331	1.0442	-0.1639	0.0508	-0.0979
38	N	712.0	663.4	48.5993	0.4015	0.0347	1.0756	0.0761	-0.0258	0.0473
39	S	614.0	699.1	-85.1134	-0.7072	0.0381	1.0631	-0.1408	0.0551	-0.0936
40	b	745.0	717.0	28.0302	0.2319	0.0400	1.0869	0.0473	-0.0197	0.0324
41	c	814.0	752.7	61.3175	0.5096	0.0440	1.0814	0.1094	-0.0502	0.0786
42	s	515.0	806.3	-291.3	-2.6020	0.0508	0.8277	-0.6022	0.3106	-0.4592
43	z	815.0	842.0	-26.9644	-0.2250	0.0559	1.1053	-0.0547	0.0300	-0.0431
44	t	766.0	931.2	-165.2	-1.4200	0.0702	1.0285	-0.3901	0.2399	-0.3257
45	f	1675.0	1306.2	368.8	3.7355	0.1572	0.7154	1.6135	-1.2320	1.5004
46	g	1491.0	1341.9	149.1	1.3511	0.1678	1.1587	0.6067	-0.4681	0.5669
47	q	1692.0	1431.2	260.8	2.5208	0.1959	0.9932	1.2444	-0.9822	1.1749

- Large Hat diag values on both ends of the regression

- Large DFFITS and DFBETAS for observation 45 \& 47.
- Large RSTUDENT for observation 45

Residual plot

- Residual plots are a useful tool for detecting various problems
- Outliers
- Curvature
- Non-homogeneous variance
- and more
- This was produced by the statements,
- 89
- 90 options ls=78 ps=45;
plot residual.*predicted.=obsid; run;

Residual plot

Univariate tests \& graphics

- Basic PROC UNIVARIATE information.

■

- N
-Mean
-Std Deviation
- Skewness
-Uncorrected SS
-Coeff Variation

Moments
47 Sum Weights
47
0 Sum Observations
120.703619 Variance 14569.3637
0.47869472 Kurtosis 1.04153074
670190.732 Corrected SS 670190.732

Std Error Mean

Basic Statistical Measures			
" Location	Variability		
- Mean	0.00000	Std Deviation	120.70362
- Median	-0.14041	Variance	14569
- Mode	.	Range	660.02160
"		Interquartile Range	161.40929

Univariate tests \& graphics

- PROC UNIVARIATE test of normality.

\author{

- Test
 - Shapiro-Wilk
 - Kolmogorov-Smirnov
 - Cramer-von Mises
 -Anderson-Darling
}

Tests for Normality
--Statistic---

D 0.084574
W-Sq 0.044081
A-Sq 0.354877
0.973389

Pr > W-Sq
>0.2500
Pr>A-Sq>0.2500

Univariate tests \& graphics (continued)

-Univariate Procedure (continued)			
Stem	Leaf	\#	Boxplot
3	7	1	0
3			
2	6	1	\|
2			\|
1	56	2	I
1	00334	5	\|
0	5555666899	10	-+
0	0033	4	$1+1$
-0	3210	4	*----*
-0	997766665	9	+-----+
-1	4321110	7	\|
-1	755	3	\|
-2			I
-2	9	1	\|
Multiply Stem. Leaf by $10{ }^{* *}+2$			

Univariate tests \& graphics (continued)

Summary

- For this relationship a significant correlation exists between the diameter of the tree and the weight of the wood harvested from the tree. In fact, we get 178.6 pounds of wood for each additional inch of diameter
$-\mathrm{P}\left(161.328 \leq \beta_{1} \leq 195.872\right)=0.95$
- The equation to predict wood harvest from diameter is $Y_{i}=-729.4+178.6^{*} X_{i}$

Summary (continued)

- We might expect that a tree with a diameter of zero to have a weight of zero, but our model says that the weight for such a tree would actually be -729.4. The first question is whether this is STATISTICALLY SIGNIFICANT in differing from the hypothesized value of zero. It is ($\mathrm{P}<0.0001$).
- This is impossible, so either there is something about tree growth we don't understand, or we do not have a good model.

Summary (continued)

- So we try to evaluate our model.
- Are the observations correct and reasonable?
- Examine the RSTUDENT values. - Potential problem for Obs \#45
- Examine the residual plot. This plot appears to show that the line is actually curved and possibly has non-homogeneous variance!!!

Summary (continued)

- The Hat diag values indicated that the values on the end of the regression were possibly "unusual".
- This is not uncommon for simple linear regression, which is kind of one dimensional for X. This statistics will be more useful for multiple regression.

Summary (continued)

- The influence diagnostics indicated that a number of observations were "influential".
- If the observations are correct, and not outliers, this is not a problem.
- Also if an observation IS an outlier, but it is not influential, we don't have much of a problem.
- Problems occur when an observation is BOTH and outlier and influential.
- Like observation \#45!!!

Summary (continued)

- Examine the PROC UNIVARIATE output for tests and graphics of normality and for outliers.
- The Shapiro-Wilk test indicates the residuals do not depart from normality.
- The graphics do not show a great departure from normality, but there is a possible outlier (observation "f", its \#45).
- The normal probability plot shows only one departure, and it appears to be the outlier on the upper end (\#45 again).

Summary (continued)

- So this regression appears to fit "well". Everything is significant and the R^{2} is pretty high, but there are a lot of problems.
- The basic problem is that we do not have the right model. The model should really have some curvature (we will cover this later). Then, observations that are outliers on the ends might fit right on the line.

