Confidence intervals for normal distributions (individuals and means)

We have previously discussed the two tailed probability statement of the form

$$
\mathrm{P}\left(-\mathrm{Z}_{0}<\mathrm{Z}<\mathrm{Z}_{0}\right)=1-\alpha
$$

and we know that $Z_{i}=\frac{Y_{i}-\mu}{\sigma}$. If we substitute this into the probability statement above, we can show that,

$$
\begin{aligned}
& P\left(-Z_{0} \leq Z \leq Z_{0}\right)=P\left(-Z_{0} \leq \frac{Y-\mu}{\sigma} \leq Z_{0}\right)= \\
& P\left(-Z_{0} \sigma \leq Y-\mu \leq Z_{0} \sigma\right)=P\left(-Y-Z_{0} \sigma \leq-\mu \leq-Y+Z_{0} \sigma\right)= \\
& P\left(Y+Z_{0} \sigma \geq \mu \geq Y-Z_{0} \sigma\right)=P\left(Y-Z_{0} \sigma \leq \mu \leq Y+Z_{0} \sigma\right)=1-\alpha
\end{aligned}
$$

The last statement gives a function that indicates that the value $\mathrm{Y}-\mathrm{Z}_{0} \sigma$ is smaller than, or equal to, μ and $\mathrm{Y}+\mathrm{Z}_{0} \sigma$ is larger than, or equal to, μ. This gives an interval which we expect, on average, would encompass the value of $\mu 100^{*}(1-\alpha) \%$ of the time. For example if $\alpha=0.05$, we would expect that with repeated sampling, 95% of the sample estimates of μ would fall between $\mathrm{Y}-\mathrm{Z}_{0} \sigma$ and $\mathrm{Y}+\mathrm{Z}_{0} \sigma$. This same derivation follows for working with both means and individual observations, so we would expect $100 *(1-\alpha) \%$ of the individual points in a normal distribution to fall in the interval,

$$
P\left(Y-Z_{0} \sigma \leq \mu \leq Y+Z_{0} \sigma\right)=1-\alpha
$$

When working with sample means we may want to know "how good is our estimate of the mean?" We can apply the same interval to means with the formula,

$$
P\left(\bar{Y}-Z_{0} \sigma_{\bar{Y}} \leq \mu \leq \bar{Y}+Z_{0} \sigma_{\bar{Y}}\right)=P\left(\bar{Y}-Z_{0} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{Y}+Z_{0} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha .
$$

We would interpret this as indicating that, on average, the true mean would fall within this interval $100^{*}(1-$ $\alpha) \%$ of the time. The value $100 *(1-\alpha) \%$ is called the "confidence value" and the interval is called the confidence interval.

The same derivation works for the t distribution, so for samples we expect $100 *(1-\alpha) \%$ of the observations to fall within the interval

$$
P\left(Y-t_{0} s \leq \mu \leq Y+t_{0} s\right)=1-\alpha,
$$

We would expect that, on the average, the true mean would fall within the interval

$$
P\left(\bar{Y}-t_{0} s_{\bar{Y}} \leq \mu \leq \bar{Y}+t_{0} s_{\bar{Y}}\right)=P\left(\bar{Y}-t_{0} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{Y}+t_{0} \frac{s}{\sqrt{n}}\right)=1-\alpha
$$

$100 *(1-\alpha) \%$ of the time.
The t distribution would be used when the variance, S^{2} is estimated from the sample and the Z distribution used when a known variance value was available $\left(\sigma^{2}\right)$.

Examples of interval applications on means.

What interval on a population which has $\mu=22$ and $\sigma^{2}=81$ would include 90% of the individuals in the population?

Answer: $\quad \mathrm{P}\left(7.196<\mathrm{Y}_{\mathrm{i}}<36.804\right)=0.900$
Place a 70% confidence interval on the estimate of a mean ($\overline{\mathrm{Y}}=43$) from a sample of 20 individuals drawn from a population with known variance $\sigma^{2}=441$ (note that d.f. $=19$).

Answer: $\quad P\left(38.133<\mu_{\bar{Y}}<47.867\right)=0.700$
Given a sample with $\bar{Y}=52, S^{2}=81$ and d.f. $=25$, what interval would you expect to include 98% of the individuals in the population?

Answer: $\quad \mathrm{P}\left(29.634<\mathrm{Y}_{\mathrm{i}}<74.366\right)=0.980$
Given a sample with $\overline{\mathrm{Y}}=24, S^{2}=324$ and d.f. $=25$, place an 98% confidence interval on the estimate of the mean.

Answer: $\quad \mathrm{P}\left(15.227<\mathrm{Y}_{\mathrm{i}}<32.773\right)=0.980$

Confidence intervals for variances

The distribution of variances is described by the Chi square distribution. We have discussed the interval on this distribution where

$$
\mathrm{P}\left(\chi_{1}^{2} \leq \chi^{2} \leq \chi_{2}^{2}\right)=1-\alpha
$$

Due to the asymmetry and non-negative nature of the Chi square distribution the upper and lower values are not equal with reversed signs as with the t distribution interval. Separate values for χ_{1}^{2} and χ_{2}^{2} are needed. We also know that $\chi^{2}=\frac{\left(Y_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{S S}{\sigma^{2}}$. This can be substituted into the probability statement above such that,

$$
\begin{aligned}
& \mathrm{P}\left(\chi_{1}^{2} \leq \chi^{2} \leq \chi_{2}^{2}\right)=\mathrm{P}\left(\chi_{1}^{2} \leq \frac{S S}{\sigma^{2}} \leq \chi_{2}^{2}\right)=\mathrm{P}\left(\frac{1}{\chi_{1}^{2}} \geq \frac{\sigma^{2}}{S S} \geq \frac{1}{\chi_{2}^{2}}\right) \\
& =\mathrm{P}\left(\frac{\mathrm{SS}}{\chi_{1}^{2}} \geq \sigma^{2} \geq \frac{S S}{\chi_{2}^{2}}\right)=\mathrm{P}\left(\frac{\mathrm{SS}}{\chi_{2}^{2}} \leq \sigma^{2} \leq \frac{S S}{\chi_{1}^{2}}\right)=1-\alpha
\end{aligned}
$$

This last statement gives a confidence interval for variances.

Examples of interval applications on variances.

Place a 95% confidence interval on the estimate of the variance for a sample with $\overline{\mathrm{Y}}=21, \mathrm{~S}^{2}=196$ and d.f.=18. (Note : SS = 196*18)

$$
\text { Answer: } \quad P\left(111.906<\sigma^{2}<428.637\right)=0.950
$$

