Read Carefully. Give an answer in the form of a number or numeric expression where possible. Use a value of 0.05 for α if not specified. t-tables are NOT provided, it you need a t-value use " 2 ".

1) 2 points each - Circle T for a true statement below or F for a false statement.

T (F a) Tests of mean difference using Tukey's adjustment are more powerful than Fisher's protected LSD.

T (F) b) Tests of mean difference using Scheffé's adjustment are more powerful than Tukey’s.
(T) F c) The F test of treatments in the usual Analysis of Variance is a one tailed test.
(T) F d) Tests of mean difference using Fishers LSD are the most likely to make a TYPE I error.
(T) F e) Tests of mean difference using Scheffé's adjustment are the most likely to make a TYPE II error.
(T) F f) Tests of mean difference using Fisher's Protected LSD have an " α " probability of error on every single test.

T (F) g) Tests of mean difference using Dunnett's adjustment are suitable for data dredging.
T (F) h) Tests of mean difference between a control and the other treatment levels is best done with a Bonferroni adjustment.

T (F i) The assumption of normality is no longer needed if PROC MIXED is used instead of PROC GLM.

T (F) j) Welch's test is one of the tests of homogeneity of variance provided by PROC GLM.
(T) F k) All analysis of variance experiments will have at least one random variance component.

T (F) l) If subjects are randomly chosen from a population of males and randomly chosen from a population of females then "GENDER" is a random treatment effect.

T (F m) Getting an analysis of variance with more replicates (i.e. larger n) is an important step to reducing the TYPE I (α) error rate.
(T) F n) The Satterthwaite approximation can be used to estimate the degrees of freedom when variances are not equal in the two sample t-test and in analysis of variance.
2) 3 points - Which of the tests of homogeneity below are based on the comparison of a full model to a reduced model, where the reduced model is some subset or restriction of the full model?
a) Levene's test
b) O'Brien's test
c) Brown and Forsythe's
(d)Bartlett's test
3) 3 points - Techniques for the analysis of differences among more than 3 means and other modern statistical techniques were developed by which of the following?
a) Carlo Emilio Bonferroni
(b) Ronald Aylmer Fisher
c) Barack Obama
d) James P Geaghan
4) 3 points - One test of homogeneity of variance can be done in SAS as either "Absolute values" or as "Squared values". Which test below has these characteristics?
(a) Levene's test
b) O’Brien's test
c) Brown and Forsythe's
d) Bartlett's test
5) 3 points - Post hoc test like Tukey's and Scheffé's are used instead of the LSD for which of the following reasons?
(a)they reduce Type I (α) error rate inflation
a) they reduce Type II (β) error rate inflation
c) they increase power
d) they are easier to interpret
6) 3 points - Both Tukey's and Scheffé's adjustments are said to have which of the following?
a) comparisonwise error rate
b) familywise error rate
(C) experimentwise error rate
d) samplewise error rate
7) 3 points each - An instructor teaching a high school class wants to know if the students are all understanding the material equally. In particular, he wants to know if the males and females are scoring equally in his exams and he wants to know if the upper classmen are scoring higher than the lower level classes. He has both boys and girls from the senior and junior classes, but only girls from the sophomore class.
Write three contrasts below; (1) one contrast comparing the mean of all boys to all girls, (2) one contrast comparing the mean of all seniors to all juniors and (3) one contrast comparing the mean of the sophomore girls versus the mean of the junior and senior girls combined.

Contrasts \downarrow Treatments \rightarrow	Senior Boys	Senior Girls	Junior Boys	Junior Girls	Sophomore Girls
a) All Boys versus all Girls	-3	-2	-3	2	2
b) All Seniors versus all Juniors	-1	-1	1	1	0
c) Sophmore girls versus all other girls	0	-1	0	1	-2

8) 3 points - Contrasts are said to be orthogonal if which of the following is true?
a) all of the contrasts sum to zero
(b) the cross product between each pair of contrasts sums to zero
c) all values in the contrast are integers (not fractions)
d) the sum of the sum of squares of the contrasts is equal to the sum of squares of the treatment
9) For each experiment described below name the most appropriate type of analysis and any additional questions where applicable.
a) 3 points each - A Veterinary Medicine student saw an advertisement for a dog food called "Kibbles and Bits" claiming that "Bits" make the difference in the desirability of dog food (to dogs). He decides to test this hypothesis. He has 30 dogs of similar size currently housed in the facility where he works. He prepares 3 diets; (1) Kibbles \& Bits, (2) Kibbles without Bits and he uses (3) Purina Dog Chow as a control, He randomly assigns 10 dogs to each diet and measures the mean weight of food consumed in 30 minutes. What type of analysis should he use to see if mean consumption differs among the 3 diets?
a) Type of analysis (circle one)
a) CRD
b) RBD
b) What is the treatment variable (circle one) a) Diets b) Dogs c) Consumed d) 30 minutes
c) How many degrees of freedom would the treatment mean square have? d.f. $=2$

The student decided to try some contrasts among the diet means. Fill in the appropriate contrast indicated below.

Contrast (3 points each)	A) Kibbles with Bits	B) Kibbles without Bits	C) Purina Dog Chow
d) "Kibbles with Bits versus Kibbles without Bits" Means compared: A versus B with C excluded	-1	1	0
e) "Anything with Kibbles versus Purina Dog Chow" Means compared: A and B versus C	-1	-1	-1

10) 3 points - A librarian is studying the book usage by college professors. The variable of interest is the mean number of books check out by male and female faculty during the fall semester. He also wants to compare the usage by Assistant Professors, Associate Professors and Full Professors. What type of analysis would be used for this experiment?

Answer: CRD factorial (2 x 3)
11) The questions below refer to SAS output. The program is given above and the output is provided separately. Be sure to turn in your output with your exam!
Three separate analyses have been provided: (1) PROC MIXED with heterogeneous variance, (2) PROC MIXED with homogeneous variance and (3) GLM which can only be done with homogenous variance but HOV tests are provided.
Choose the best and most appropriate of the 3 models to answer the questions pertaining to the SAS output. Also note that the investigators have calculated all pairwise tests AND a number of contrasts. Decide which post-ANOVA technique is appropriate for this situation and use it wherever possible. Note that computations have been requested for 3 different adjustments (Tukey, Scheffé and Bonferroni) and, of course, PROC MIXED automatically provides LSD tests for pairwise differences.
a) 3 points - Do there appear to be significant differences among the levels of the treatment(s).

$$
\text { Circle one: YES NO } \quad P \text { value }(4 \text { decimals })=0.0237
$$

b) 3 points - There are several contrasts included with the analysis (see computer program). One or more of these contrasts test pairwise differences in treatment level means? Circle all letters below that correspond to contrasts that do pairwise tests of treatment means.
Circle all that apply:
A
B
C
(D)
E
c) 3 points - In addition to the contrasts, there are several range tests provided. If the investigators are interested in all pairwise comparisons among means and also interested in the contrasts, which would be the best choice of the multiple range tests provided?
Circle one: LSD Tukey's Scheffés Bonferroni's
d) 4 points - Give a confidence interval for the mean of treatment number A3.

$$
\mathrm{P}(\underline{64.2989} \leq \mu \leq \underline{69.3411})=0.95
$$

e) 3 points - Give a linear model for this analysis?

$$
Y_{i j}=\mu+\tau_{i}+\varepsilon_{i j}
$$

f) 4 points - If the investigators said that their only interest was in "all pairwise tests", would they conclude that treatment level "A4" significantly different from level "A6"?

Circle one: YES NO \mathbf{P} value required here (4 decimals) $=0.0446$
g) 3 points - How many replicates are there for each treatment? \square
h) 4 points - Does the assumption of homogeneity of variance appear to have been met? Use the "best" available statistic to determine this.

Circle one: YES NO P value $(4$ decimals $)=0.5467$ or 0.5767
\qquad

```
dm'log;clear;output;clear';
***********************************************
*** Exam 3 Example ***
***********************************************;
```

OPTIONS LS=105 PS=512 nocenter nodate nonumber nolabel FORMCHAR="|----|+|---+=|-ハ<>*";
TITLE1 'Exam 3 Problem';
DATA ONE; INFILE CARDS MISSOVER;
INPUT Treatment \$ Y_Value;
CARDS; RUN;
;
ROC MIXED DATA=ONE; CLASSES Treatment;
MODEL Y_Value = Treatment / outp=resids;
repeated / group = Treatment;
run;
PROC MIXED DATA=ONE; CLASSES Treatment;
MODEL Y_Value = Treatment / outp=resids;
LSMEANS Treatment / adjust=Tukey cl;
LSMEANS Treatment / adjust=Scheffe cl;
LSMEANS Treatment / adjust=Bon cl;
*** order of treatment levels => A1 A2 A3 A4 A5 A6 A7 A8;

contrast 'B) low vrs high' \quad treatment -1
contrast 'C) one \& two vrs others' treatment -3
$\begin{array}{llllllllllll}\text { contrast 'D) one vrs two' } & \text { treatment } & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 ;\end{array}$
contrast 'E) one vrs others' treatment -7 $1 \begin{array}{lllllllll} & 1 & 1 & 1 & 1 & 1 & 1 ;\end{array}$
ods output diffs=ppp lsmeans=mmm;
**ods listing exclude diffs lsmeans; run;
\%include 'C:\pdmix800.sas';
\%pdmix800(ppp,mmm, alpha=0.05, sort=yes);
RUN; QUIT;
PROC UNIVARIATE DATA=resids NORMAL PLOT; VAR resid; RUN;
PROC GLM DATA=ONE; CLASSES Treatment;
MODEL Y_Value = Treatment / SS3;
MEANS Treatment / TUKEY scheffe duncan;
MEANS Treatment / HOVTEST=BARTLETT HOVTEST=BF
HOVTEST=LEVENE HOVTEST=OBRIEN WELCH;

RUN; QUIT;

Exam 3 Problem : Example with Separate Variances

The Mixed Procedure

Model Information
Data Set
Dependent Variable
Covariance Structure
Group Effect
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method

WORK. ONE
Y_Value
Variance Components
Treatment
REML
None
Model-Based
Between-Within

Exam 3 Computer Output - Return with exam
Name \qquad
Exam 3 Problem : Example with Separate Variances
Class Level Information
Class Levels Values
Treatment 8 A1 A2 A3 A4 A5 A6 A7 A8
Dimensions
Covariance Parameters 8
Columns in X 9
Columns in Z 0
Subjects
Max Obs Per Subject 80

Number of Observations
Number of Observations Read 80
Number of Observations Used 80
Number of Observations Not Used 0

| Iteration History | | | |
| ---: | ---: | ---: | ---: | ---: |
| Iteration | Evaluations | -2 Res Log Like | Criterion |
| 0 | 1 | 422.34896310 | |
| 1 | 1 | 416.42442399 | 0.00000000 |

Convergence criteria met.
Covariance Parameter Estimates

Cov Parm	Group	Estimate
Residual	Treatment A1	20.5943
Residual	Treatment A2	15.3001
Residual	Treatment A3	8.6307
Residual	Treatment A4	6.8667
Residual	Treatment A5	22.5427
Residual	Treatment A6	24.2604
Residual	Treatment A7	16.9512
Residual	Treatment A8	12.8090

Fit Statistics

-2 Res Log Likelihood 416.4
AIC (smaller is better) 432.4
AICC (smaller is better) 434.7
BIC (smaller is better) 451.5
Null Model Likelihood Ratio Test

DF	Chi-Square	Pr $>$ ChiSq
7	5.92	0.5486

$\begin{array}{lrrrr}\text { Type } 3 \text { Tests of Fixed Effects } \\ & \text { Num } & \text { Den } & \\ \text { Effect } & \text { DF } & \text { DF } & \text { F Value } & \text { Pr }>\text { F } \\ \text { Treatment } & 7 & 72 & 3.78 & 0.0015\end{array}$

Exam 3 Computer Output - Return with exam
Name \qquad
Exam 3 Problem : Example with Homogeneous Variance
The Mixed Procedure
Model Information
Data Set WORK.ONE
Dependent Variable
Covariance Structure
Estimation Method
Residual Variance Method
Fixed Effects SE Method
Degrees of Freedom Method

Y_Value
Diagonal
REML
Profile
Model-Based
Residual

Class Level Information
Class Levels Values
Treatment 8 A1 A2 A3 A4 A5 A6 A7 A8
Dimensions
Covariance Parameters 1
Columns in X 9
Columns in Z 0
Subjects 1
Max Obs Per Subject 80
Number of Observations
Number of Observations Read 80
Number of Observations Used 80
Number of Observations Not Used
Covariance Parameter Estimates
Cov Parm Estimate
Residual 15.9944
Fit Statistics
-2 Res Log Likelihood 422.3
AIC (smaller is better) 424.3
AICC (smaller is better) 424.4
BIC (smaller is better) 426.6
Type 3 Tests of Fixed Effects
Num Den

Effect	DF	DF	F Value	Pr $>$ F
Treatment	7	72	2.49	0.0237

Contrasts Num Den
Label DF DF
$\begin{array}{lllll}\text { A) odd vrs even } & 1 & 72 & 3.55 & 0.0636\end{array}$
B) low vrs high $72 \quad 8.04 \quad 0.0059$
C) one \& two vrs others 72
D) one vrs two $72 \quad 1.57 \quad 0.2145$
E) one vrs others
$0.00 \quad 0.9446$

Exam 3 Computer Output - Return with exam
Name \qquad
Exam 3 Problem : Example with Homogeneous Variance

Least Squa	Means		Standard								
Effect	Treatment	Estimate	Error	DF	t	Value	Pr > \|t		Alpha	Lower	Upper
Treatment	A1	65.7100	1.2647	72		51.96	<. 0001	0.05	63.1889	68.2311	
Treatment	A2	63.4700	1.2647	72		50.19	<. 0001	0.05	60.9489	65.9911	
Treatment	A3	66.8200	1.2647	72		52.84	<. 0001	0.05	64.2989	69.3411	
Treatment	A4	62.1000	1.2647	72		49.10	<. 0001	0.05	59.5789	64.6211	
Treatment	A5	67.5400	1.2647	72		53.40	<. 0001	0.05	65.0189	70.0611	
Treatment	A6	67.7600	1.2647	72		53.58	<. 0001	0.05	65.2389	70.2811	
Treatment	A7	66.4700	1.2647	72		52.56	<. 0001	0.05	63.9489	68.9911	
Treatment	A8	66.4700	1.2647	72		52.56	<. 0001	0.05	63.9489	68.9911	

Differenc	ofLeast	Squares Means		Standard						
Effect	Treatment	Treatment	Estimate	Error	DF	t Value	Pr > \|t		Adjustment	Adj P
Treatment	A1	A2	2.2400	1.7885	72	1.25	0.2145	Tukey	0.9129	
Treatment	A1	A3	-1.1100	1.7885	72	-0.62	0.5368	Tukey	0.9985	
Treatment	A1	A4	3.6100	1.7885	72	2.02	0.0473	Tukey	0.4771	
Treatment	A1	A5	-1.8300	1.7885	72	-1.02	0.3096	Tukey	0.9694	
Treatment	A1	A6	-2.0500	1.7885	72	-1.15	0.2555	Tukey	0.9440	
Treatment	A1	A7	-0.7600	1.7885	72	-0.42	0.6722	Tukey	0.9999	
Treatment	A1	A8	-0.7600	1.7885	72	-0.42	0.6722	Tukey	0.9999	
Treatment	A2	A3	-3.3500	1.7885	72	-1.87	0.0651	Tukey	0.5735	
Treatment	A2	A4	1.3700	1.7885	72	0.77	0.4462	Tukey	0.9943	
Treatment	A2	A5	-4.0700	1.7885	72	-2.28	0.0258	Tukey	0.3212	
Treatment	A2	A6	-4.2900	1.7885	72	-2.40	0.0190	Tukey	0.2579	
Treatment	A2	A7	-3.0000	1.7885	72	-1.68	0.0978	Tukey	0.7015	
Treatment	A2	A8	-3.0000	1.7885	72	-1.68	0.0978	Tukey	0.7015	
Treatment	A3	A4	4.7200	1.7885	72	2.64	0.0102	Tukey	0.1592	
Treatment	A3	A5	-0.7200	1.7885	72	-0.40	0.6885	Tukey	0.9999	
Treatment	A3	A6	-0.9400	1.7885	72	-0.53	0.6008	Tukey	0.9995	
Treatment	A3	A7	0.3500	1.7885	72	0.20	0.8454	Tukey	1.0000	
Treatment	A3	A8	0.3500	1.7885	72	0.20	0.8454	Tukey	1.0000	
Treatment	A4	A5	-5.4400	1.7885	72	-3.04	0.0033	Tukey	0.0616	
Treatment	A4	A6	-5.6600	1.7885	72	-3.16	0.0023	Tukey	0.0446	
Treatment	A4	A7	-4.3700	1.7885	72	-2.44	0.0170	Tukey	0.2370	
Treatment	A4	A8	-4.3700	1.7885	72	-2.44	0.0170	Tukey	0.2370	
Treatment	A5	A6	-0.2200	1.7885	72	-0.12	0.9024	Tukey	1.0000	
Treatment	A5	A7	1.0700	1.7885	72	0.60	0.5515	Tukey	0.9988	
Treatment	A5	A8	1.0700	1.7885	72	0.60	0.5515	Tukey	0.9988	
Treatment	A6	A7	1.2900	1.7885	72	0.72	0.4731	Tukey	0.9961	

Exam 3 Computer Output - Return with exam

Exam 3 Co			am				ame		
Treatment	A6	A8	1.2900	1.7885	72	0.72	0.4731	Tukey	0.9961
Treatment	A7	A8	-183E-15	1.7885	72	-0.00	1.0000	Tukey	1.0000
Treatment	A1	A2	2.2400	1.7885	72	1.25	0.2145	Scheffe	0.9785
Treatment	A1	A3	-1.1100	1.7885	72	-0.62	0.5368	Scheffe	0.9997
Treatment	A1	A4	3.6100	1.7885	72	2.02	0.0473	Scheffe	0.7684
Treatment	A1	A5	-1.8300	1.7885	72	-1.02	0.3096	Scheffe	0.9935
Treatment	A1	A6	-2.0500	1.7885	72	-1.15	0.2555	Scheffe	0.9872
Treatment	A1	A7	-0.7600	1.7885	72	-0.42	0.6722	Scheffe	1.0000
Treatment	A1	A8	-0.7600	1.7885	72	-0.42	0.6722	Scheffe	1.0000
Treatment	A2	A3	-3.3500	1.7885	72	-1.87	0.0651	Scheffe	0.8307
Treatment	A2	A4	1.3700	1.7885	72	0.77	0.4462	Scheffe	0.9990
Treatment	A2	A5	-4.0700	1.7885	72	-2.28	0.0258	Scheffe	0.6390
Treatment	A2	A6	-4.2900	1.7885	72	-2.40	0.0190	Scheffe	0.5723
Treatment	A2	A7	-3.0000	1.7885	72	-1.68	0.0978	Scheffe	0.8981
Treatment	A2	A8	-3.0000	1.7885	72	-1.68	0.0978	Scheffe	0.8981
Treatment	A3	A4	4.7200	1.7885	72	2.64	0.0102	Scheffe	0.4421
Treatment	A3	A5	-0.7200	1.7885	72	-0.40	0.6885	Scheffe	1.0000
Treatment	A3	A6	-0.9400	1.7885	72	-0.53	0.6008	Scheffe	0.9999
Treatment	A3	A7	0.3500	1.7885	72	0.20	0.8454	Scheffe	1.0000
Treatment	A3	A8	0.3500	1.7885	72	0.20	0.8454	Scheffe	1.0000
Treatment	A4	A5	-5.4400	1.7885	72	-3.04	0.0033	Scheffe	0.2527
Treatment	A4	A6	-5.6600	1.7885	72	-3.16	0.0023	Scheffe	0.2065
Treatment	A4	A7	-4.3700	1.7885	72	-2.44	0.0170	Scheffe	0.5478
Treatment	A4	A8	-4.3700	1.7885	72	-2.44	0.0170	Scheffe	0.5478
Treatment	A5	A6	-0.2200	1.7885	72	-0.12	0.9024	Scheffe	1.0000
Treatment	A5	A7	1.0700	1.7885	72	0.60	0.5515	Scheffe	0.9998
Treatment	A5	A8	1.0700	1.7885	72	0.60	0.5515	Scheffe	0.9998
Treatment	A6	A7	1.2900	1.7885	72	0.72	0.4731	Scheffe	0.9993
Treatment	A6	A8	1.2900	1.7885	72	0.72	0.4731	Scheffe	0.9993
Treatment	A7	A8	-183E-15	1.7885	72	-0.00	1.0000	Scheffe	1.0000
Treatment	A1	A2	2.2400	1.7885	72	1.25	0.2145	Bonferroni	1.0000
Treatment	A1	A3	-1.1100	1.7885	72	-0.62	0.5368	Bonferroni	1.0000
Treatment	A1	A4	3.6100	1.7885	72	2.02	0.0473	Bonferroni	1.0000
Treatment	A1	A5	-1.8300	1.7885	72	-1.02	0.3096	Bonferroni	1.0000
Treatment	A1	A6	-2.0500	1.7885	72	-1.15	0.2555	Bonferroni	1.0000
Treatment	A1	A7	-0.7600	1.7885	72	-0.42	0.6722	Bonferroni	1.0000
Treatment	A1	A8	-0.7600	1.7885	72	-0.42	0.6722	Bonferroni	1.0000
Treatment	A2	A3	-3.3500	1.7885	72	-1.87	0.0651	Bonferroni	1.0000

Exam 3 Computer Output - Return with exam

Exam 3 Computer Output - Return with exam						
Treatment	A2	A4	1.3700	1.7885	72	0.77
Treatment	A2	A5	-4.0700	1.7885	72	$-\mathbf{- 2 . 2 8}$
Treatment	A2	A6	-4.2900	1.7885	72	-2.40
Treatment	A2	A7	-3.0000	1.7885	72	-1.68
Treatment	A2	A8	-3.0000	1.7885	72	-1.68
Treatment	A3	A4	4.7200	1.7885	72	2.64
Treatment	A3	A5	-0.7200	1.7885	72	-0.40
Treatment	A3	A6	-0.9400	1.7885	72	-0.53
Treatment	A3	A7	0.3500	1.7885	72	0.20
Treatment	A3	A8	0.3500	1.7885	72	0.20
Treatment	A4	A5	-5.4400	1.7885	72	-3.04
Treatment	A4	A6	-5.6600	1.7885	72	-3.16
Treatment	A4	A7	-4.3700	1.7885	72	-2.44
Treatment	A4	A8	-4.3700	1.7885	72	-2.44
Treatment	A5	A6	-0.2200	1.7885	72	-0.12
Treatment	A5	A7	1.0700	1.7885	72	0.60
Treatment	A5	A8	1.0700	1.7885	72	0.60
Treatment	A6	A7	1.2900	1.7885	72	0.72
Treatment	A6	A8	1.2900	1.7885	72	0.72
Treatment	A7	A8	$-183 E-15$	1.7885	72	-0.00

Effect=Treatment ADJUSTMENT=Scheffe($\mathrm{P}<0.05$) bygroup $=2$

Obs	Treatment	Estimate	StdErr	Alpha	Lower	Upper	MSGROUP
9	A6	67.7600	1.2647	0.05	65.2389	70.2811	A
10	A5	67.5400	1.2647	0.05	65.0189	70.0611	A
11	A3	66.8200	1.2647	0.05	64.2989	69.3411	A
12	A8	66.4700	1.2647	0.05	63.9489	68.9911	A
13	A7	66.4700	1.2647	0.05	63.9489	68.9911	A
14	A1	65.7100	1.2647	0.05	63.1889	68.2311	A
15	A2	63.4700	1.2647	0.05	60.9489	65.9911	A
16	A4	62.1000	1.2647	0.05	59.5789	64.6211	A
Effect=Treatment ADJUSTMENT=Tukey ($\mathrm{P}<0.05$) bygroup $=1$							
Obs	Treatment	Estimate	StdErr	Alpha	Lower	Upper	MSGROUP
17	A6	67.7600	1.2647	0.05	65.2389	70.2811	A
18	A5	67.5400	1.2647	0.05	65.0189	70.0611	AB
19	A3	66.8200	1.2647	0.05	64.2989	69.3411	AB
20	A8	66.4700	1.2647	0.05	63.9489	68.9911	AB
21	A7	66.4700	1.2647	0.05	63.9489	68.9911	AB
22	A1	65.7100	1.2647	0.05	63.1889	68.2311	AB
23	A2	63.4700	1.2647	0.05	60.9489	65.9911	AB
24	A4	62.1000	1.2647	0.05	59.5789	64.6211	B

Exam 3 Computer Output - Return with exam Name \qquad
Exam 3 Problem : Example with Homogeneous Variance
The UNIVARIATE Procedure
Variable: Resid
Moments

N	80	Sum Weights	80
Mean	0	Sum Observations	0
Std Deviation	3.81800531	Variance	14.5771646
Skewness	0.73834537	Kurtosis	-0.4680077
Uncorrected SS	1151.596	Corrected SS	1151.596
Coeff Variation	.	Std Error Mean	0.42686597

Basic Statistical Measures

Location
$\begin{array}{lr}\text { Mean } & 0.00000 \\ \text { Median } & -1.21500 \\ \text { Mode } & -3.40000\end{array}$

Variability

Variability	
Std Deviation	3.81801
Variance	14.57716
Range	14.76000
Interquartile Range	5.21000

Note: The mode displayed is the smallest of 4 modes with a count of 2.

Tests for Location: Mu0=0
Test -Statistic

Student's t	t	0	$\operatorname{Pr}>\|t\|$
Sign	M	-9	$\operatorname{Pr}>=\|M\|$
Signed Rank	S	-140	$\operatorname{Pr}>=\|S\|$

Tests for Normality
Test
Shapiro-Wilk
Kolmogorov-Smirnov
Cramer-von Mises
Anderson-Darling

--Statistic---	---- p	Value-----	
W	0.921803	Pr $<$ W	0.0001
D	0.139157	Pr $>$ D	<0.0100
W-Sq	0.356387	Pr $>$ W-Sq	<0.0050
A-Sq	2.173195	Pr $>$ A-Sq	<0.0050

Stem	Leaf Boxplot
8	9
7	233579
6	046
5	178
4	
3	024579
2	125
1	1238
0	45567
-0	7543321
-1	9999775554410
-2	9877655320
-3	774444311
-4	6654110
-5	953
	---+---+---+--+

Exam 3 Computer Output - Return with exam Name \qquad

Exam 3 Problem : Analysis of Variance with PROC GLM

The GLM Procedure
Class Level Information
Class Levels Values
Treatment 8 A1 A2 A3 A4 A5 A6 A7 A8
Number of Observations Read 80
Number of Observations Used 80

Dependent Variable: Y_Value

	Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	7	279.339500	39.905643	2.49	0.0237
Error		72	1151.596000	15.994389	
Corrected Total	79	1430.935500			
R-Square	Coeff	Var	Root MSE	Y_Value Mean	
0.195215	6.078654	3.999299	65.79250		
Source		DF	Type III SS	Mean Square	F Value
Treatment	7	279.3395000	39.9056429	2.49	0.0237

Duncan's Multiple Range Test for Y_Value

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha
0.05

Error Degrees of Freedom 72
Error Mean Square 15.99439

Exam 3 Computer Output - Return with exam Name \qquad
Exam 3 Problem : Analysis of Variance with PROC GLM
Tukey's Studentized Range (HSD) Test for Y_Value
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II
error rate than REGWQ.
Alpha
0.05
Error Degrees of Freedom
72
Error Mean Square
15.99439
Critical Value of Studentized Range 4.41490
Minimum Significant Difference 5.5835

Means with the same letter are not significantly different.

Tukey Grouping			Mean
	A	67.760	10
B	A	67.540	10
A6			
B	A	66.820	10
B	A	66.470	10
B	A	66.470	10
B	A	65.710	10
B	A	63.470	10
B		62.100	10
A2	A4		

Scheffe's Test for Y_Value

NOTE: This test controls the Type I experimentwise error rate.

Alpha
Error Degrees of Freedom
Error Mean Square
Critical Value of F
Minimum Significant Difference
15.99439
. 13966
2.13966
6.9218

Means with the same letter are not significantly different.
Scheffe Grouping

	Mean	N	Treatment
A	67.760	10	A6
A	67.540	10	A5
A	66.820	10	A3
A	66.470	10	A8
A	66.470	10	A7
A	65.710	10	A1
A	63.470	10	A2
A	62.100	10	A4

Exam 3 Computer Output - Return with exam Name \qquad

Exam 3 Problem : Analysis of Variance with PROC GLM

The GLM Procedure
Levene's Test for Homogeneity of Y_Value Variance ANOVA of Squared Deviations from Group Means Sum of Mean

Source	DF	Squares	Square	F Value	Pr $>$ F
Treatment	7	2279.8	325.7	1.05	0.4056
Error	72	22364.9	310.6		

0'Brien's Test for Homogeneity of Y_Value Variance ANOVA of O'Brien's Spread Variable, $W=0.5$

Sum of Mean

Source	DF	Squares	Square	F Value	Pr $>$ F
Treatment	7	2814.5	402.1	0.93	0.4898
Error	72	31170.2	432.9		

Brown and Forsythe's Test for Homogeneity of Y_Value Variance ANOVA of Absolute Deviations from Group Medians

Sum of
Mean

Source	DF	Squares	Square	F Value	Pr $>$ F
Treatment	7	18.9995	2.7142	0.30	0.9503
Error	72	644.6	8.9524		

Bartlett's Test for Homogeneity of Y_Value Variance
Source DF Chi-Square Pr > ChiSq

Treatment	7	5.6876	0.5767

Welch's ANOVA for Y_Value

Source	DF	F Value	Pr $>$ F
Treatment	7.0000	3.34	0.0091

Error 30.7198

The GLM Procedure

Level of
Treatmen
A1
A2
A3
A4
A5
A6
A7
A8

N
10
10
10
10
10
10
10
10
-----------Y_Value
Mean
Std Dev
4.53809799
3.91153565
2.93779963
2.62043253
4.74791182
4.92548926
4.11718620
3.57896633

