NAME ___

Read Carefully. Give an answer in the form of a number or numeric expression where possible. Use a value of 0.05 for α if not specified. t-tables are NOT provided, it you need a t-value use "2".

EXAM 3

- 1) 2 points each Circle T for a true statement below or F for a false statement.
 - T (F) a) Tests of mean difference using Tukey's adjustment are more powerful than Fisher's protected LSD.
 - T (F) b) Tests of mean difference using Scheffé's adjustment are more powerful than Tukey's.
 - T F c) The F test of treatments in the usual Analysis of Variance is a one tailed test.
 - T F d) Tests of mean difference using Fishers LSD are the most likely to make a TYPE I error.
 - F e) Tests of mean difference using Scheffé's adjustment are the most likely to make a TYPE II error.
 - T F f) Tests of mean difference using Fisher's Protected LSD have an " α " probability of error on every single test.
 - T (F) g) Tests of mean difference using Dunnett's adjustment are suitable for data dredging.
 - T (F) h) Tests of mean difference between a control and the other treatment levels is best done with a Bonferroni adjustment.
 - T (F) i) The assumption of normality is no longer needed if PROC MIXED is used instead of PROC GLM.
 - T (F) j) Welch's test is one of the tests of homogeneity of variance provided by PROC GLM.
 - \bigcirc F k) All analysis of variance experiments will have at least one random variance component.
 - T (F) 1) If subjects are randomly chosen from a population of males and randomly chosen from a population of females then "GENDER" is a random treatment effect.
 - T (F) m) Getting an analysis of variance with more replicates (i.e. larger n) is an important step to reducing the TYPE I (α) error rate.
 - F n) The Satterthwaite approximation can be used to estimate the degrees of freedom when variances are not equal in the two sample t-test and in analysis of variance.
- 2) 3 points Which of the tests of homogeneity below are based on the comparison of a full model to a reduced model, where the reduced model is some subset or restriction of the full model?
 - a) Levene's test
 - b) O'Brien's test
 - c) Brown and Forsythe's
 - **(d)**Bartlett's test

NAME ____

- 3) 3 points Techniques for the analysis of differences among more than 3 means and other modern statistical techniques were developed by which of the following?
 - a) Carlo Emilio Bonferroni
 - **(b)**Ronald Aylmer Fisher
 - c) Barack Obama
 - d) James P Geaghan
- 4) 3 points One test of homogeneity of variance can be done in SAS as either "Absolute values" or as "Squared values". Which test below has these characteristics?
 - a)Levene's test
 - b) O'Brien's test
 - c) Brown and Forsythe's
 - d) Bartlett's test
- 5) 3 points Post hoc test like Tukey's and Scheffé's are used instead of the LSD for which of the following reasons?
 - (a) they reduce Type I (α) error rate inflation
 - a) they reduce Type II (β) error rate inflation
 - c) they increase power
 - d) they are easier to interpret
- 6) 3 points Both Tukey's and Scheffé's adjustments are said to have which of the following?
 - a) comparisonwise error rate
 - b) familywise error rate

c)experimentwise error rate

- d) samplewise error rate
- 7) 3 points each An instructor teaching a high school class wants to know if the students are all understanding the material equally. In particular, he wants to know if the males and females are scoring equally in his exams and he wants to know if the upper classmen are scoring higher than the lower level classes. He has both boys and girls from the senior and junior classes, but only girls from the sophomore class.

Write three contrasts below; (1) one contrast comparing the mean of all boys to all girls, (2) one contrast comparing the mean of all seniors to all juniors and (3) one contrast comparing the mean of the sophomore girls versus the mean of the junior and senior girls combined.

Treatments \rightarrow	Senior	Senior	Junior	Junior	Sophomore
Contrasts ↓	Boys	Girls	Boys	Girls	Girls
a) All Boys versus all Girls	3	_2_	3	_2_	_2_
b) All Seniors versus all Juniors	-1	-1	1	1	0
c) Sophmore girls versus all other girls	0	1	0	1	2_

NAME _____

8) 3 points – Contrasts are said to be orthogonal if which of the following is true?

a) all of the contrasts sum to zero

(b) the cross product between each pair of contrasts sums to zero

c) all values in the contrast are integers (not fractions)

d) the sum of the sum of squares of the contrasts is equal to the sum of squares of the treatment

EXAM 3

- 9) For each experiment described below name the most appropriate type of analysis and any additional questions where applicable.
- a) 3 points each A Veterinary Medicine student saw an advertisement for a dog food called "Kibbles and Bits" claiming that "Bits" make the difference in the desirability of dog food (to dogs). He decides to test this hypothesis. He has 30 dogs of similar size currently housed in the facility where he works. He prepares 3 diets; (1) Kibbles & Bits, (2) Kibbles without Bits and he uses (3) Purina Dog Chow as a control, He randomly assigns 10 dogs to each diet and measures the mean weight of food consumed in 30 minutes. What type of analysis should he use to see if mean consumption differs among the 3 diets?
 - a) Type of analysis (circle one) (a) CRD b) RBD
 - b) What is the treatment variable (circle one) (a) Diets (b) Dogs (c) Consumed (circle one) (a) Diets (circle one) (circle
 - c) How many degrees of freedom would the treatment mean square have? d.f. = 2

The student decided to try some contrasts among the diet means. Fill in the appropriate contrast indicated below.

Contrast (3 points each)	A) Kibbles with Bits	B) Kibbles without Bits	C) Purina Dog Chow
d) "Kibbles with Bits versus Kibbles without Bits" Means compared: A versus B with C excluded		1	0
e) "Anything with Kibbles versus Purina Dog Chow" Means compared: A and B versus C		1	2

10) 3 points – A librarian is studying the book usage by college professors. The variable of interest is the mean number of books check out by male and female faculty during the fall semester. He also wants to compare the usage by Assistant Professors, Associate Professors and Full Professors. What type of analysis would be used for this experiment?

Answer: CRD factorial (2 x 3)

Do not write in this space

EXAM 3

NAME

11) The questions below refer to SAS output. The program is given above and the output is provided separately. Be sure to turn in your output with your exam!

Three separate analyses have been provided: (1) PROC MIXED with heterogeneous variance, (2) PROC MIXED with homogeneous variance and (3) GLM which can only be done with homogenous variance but HOV tests are provided.

Choose the best and most appropriate of the 3 models to answer the questions pertaining to the SAS output. Also note that the investigators have calculated all pairwise tests AND a number of contrasts. Decide which post-ANOVA technique is appropriate for this situation and use it wherever possible. Note that computations have been requested for 3 different adjustments (Tukey, Scheffé and Bonferroni) and, of course, PROC MIXED automatically provides LSD tests for pairwise differences.

a) 3 points – Do there appear to be significant differences among the levels of the treatment(s).

Circle one: (YES) NO P value (4 decimals) = 0.0237

b) 3 points – There are several contrasts included with the analysis (see computer program). One or more of these contrasts test pairwise differences in treatment level means? Circle all letters below that correspond to contrasts that do pairwise tests of treatment means.

Circle all that apply: A B C D E

c) 3 points – In addition to the contrasts, there are several range tests provided. If the investigators are interested in all pairwise comparisons among means and **also** interested in the contrasts, which would be the best choice of the multiple range tests provided?

Circle one: LSD Tukey's Scheffé's Bonferroni's

d) 4 points – Give a confidence interval for the mean of treatment number A3.

$$P(_64.2989 \le \mu \le 69.3411 = 0.95)$$

- e) 3 points Give a linear model for this analysis? $Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$
- f) 4 points If the investigators said that their **only** interest was in "all pairwise tests", would they conclude that treatment level "A4" significantly different from level "A6"?

Circle one: YES NO P value required here (4 decimals) = 0.0446

- g) 3 points How many replicates are there for each treatment? <u>10</u>
- h) 4 points Does the assumption of homogeneity of variance appear to have been met? Use the "best" available statistic to determine this.

Circle one: (YES) NO P value (4 decimals) = 0.5467 or 0.5767

dm'log;clear;output;clear'; ***; *** Exam 3 Example OPTIONS LS=105 PS=512 nocenter nodate nonumber nolabel FORMCHAR="|----|+|---+=|-/\<>*"; TITLE1 'Exam 3 Problem'; DATA ONE; INFILE CARDS MISSOVER; INPUT Treatment \$ Y Value; CARDS; RUN; ROC MIXED DATA=ONE; CLASSES Treatment; MODEL Y Value = Treatment / outp=resids; repeated / group = Treatment; run; PROC MIXED DATA=ONE; CLASSES Treatment; MODEL Y_Value = Treatment / outp=resids; LSMEANS Treatment / adjust=Tukey cl; LSMEANS Treatment / adjust=Scheffe cl; LSMEANS Treatment / adjust=Bon cl; *** order of treatment levels => A1 A2 A3 A4 A5 A6 A7 A8; contrast 'A) odd vrs even' treatment -1 1 -1 1 -1 1 -1 1; contrast 'B) low vrs high' treatment -1 -1 -1 -1 1 1 1 1; contrast 'C) one & two vrs others' treatment -3 -3 1 1 1 1 1 1; contrast 'D) one vrs two' treatment -1 1 0 0 0 0 0 0; treatment -7 1 1 1 1 contrast 'E) one vrs others' 1 1 1; ods output diffs=ppp lsmeans=mmm; **ods listing exclude diffs lsmeans; run; %include 'C:\pdmix800.sas'; %pdmix800(ppp,mmm,alpha=0.05,sort=yes); RUN; QUIT; PROC UNIVARIATE DATA=resids NORMAL PLOT; VAR resid; RUN; PROC GLM DATA=ONE; CLASSES Treatment; MODEL Y Value = Treatment / SS3; MEANS Treatment / TUKEY scheffe duncan; MEANS Treatment / HOVTEST=BARTLETT HOVTEST=BF HOVTEST=LEVENE HOVTEST=OBRIEN WELCH; RUN; QUIT; Exam 3 Problem : Example with Separate Variances The Mixed Procedure Model Information Data Set WORK.ONE Dependent Variable Y Value Covariance Structure Variance Components Group Effect Treatment Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based

Page 5

Degrees of Freedom Method

Exam 3 Computer Output – Return with exam Name							
Exam 3 Problem : Example with Separate Variances							
Class Level Information							
Class	Levels	Value	25				
Treatment	8	A1 A2	2 A3 A4 A5	A6 A7 A8			
Dimensions							
Covariance P	arameters		8				
Columns in X			9				
Columns in Z			0				
Subjects			80				
Max Obs Per	Subject		1				
Number of Ob	servations	D 1					
Number of Ob	servations	Read		80			
Number of Ob	servations	Usea	Trad	80			
Number of Ob	servations	NOT U	lsea	0			
Ttoration Hi	atom						
Iteration HI	Evaluation	he	-2 Peg Lo	a Like	Criterion		
	Evaluation	1	-2 Res 10	896310	CITCEIION		
1		1	416 42	442399	0 0000000		
Convergence	criteria ma	⊥ >+ .	110.12	112333	0.0000000		
conver genee							
Covariance P	arameter E	stimat	es				
Cov Parm	Group		Estimate				
Residual	Treatment	A1	20.5943				
Residual	Treatment	A2	15.3001				
Residual	Treatment	A3	8.6307				
Residual	Treatment	A4	6.8667				
Residual	Treatment	A5	22.5427				
Residual	Treatment	A6	24.2604				
Residual	Treatment	A7	16.9512				
Residual	Treatment	A8	12.8090				
Fit Statisti	CS						
-2 Res Log L	ikelihood		416.4				
AIC (smaller	is better)	432.4				
AICC (smalle	r is bette	r)	434.7				
BIC (smaller	is better)	451.5				
Null Model L	ikelihood 1	Ratio	Test				
DF Ch	i-Square	Pr	: > ChiSq				
7	5.92		0.5486				
_							
Type 3 Tests of Fixed Effects							
	Num 1	Den					
LIIECT	DF.	DF	F Value	Pr > F			
ireatment	/	14	5.78	0.0012			

Exam 3 Computer Output – Return with exam Name Exam 3 Problem : Example with Homogeneous Variance The Mixed Procedure Model Information Data Set WORK.ONE Dependent Variable Y Value Covariance Structure Diagonal Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based Degrees of Freedom Method Residual Class Level Information Levels Class Values A1 A2 A3 A4 A5 A6 A7 A8 Treatment 8 Dimensions Covariance Parameters 1 Columns in X 9 Columns in Z 0 Subjects 1 80 Max Obs Per Subject Number of Observations Number of Observations Read 80 Number of Observations Used 80 Number of Observations Not Used 0 Covariance Parameter Estimates Cov Parm Estimate Residual 15.9944 Fit Statistics -2 Res Log Likelihood 422.3 AIC (smaller is better) 424.3 AICC (smaller is better) 424.4 BIC (smaller is better) 426.6 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > FTreatment 7 72 2.49 0.0237 Contrasts Num Den Label DF DF F Value Pr > F3.55 A) odd vrs even 1 72 0.0636 8.04 0.0059 B) low vrs high 1 72 72 2.41 C) one & two vrs others 1 0.1249 1 1.57 0.2145 D) one vrs two 72 1 72 0.00 0.9446 E) one vrs others

Exam 3 Computer Output – Return with exam Exam 3 Problem : Example with Homogeneous Variance

Least Squares Means			Standard						
Effect	Treatment	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper
Treatment	Al	65.7100	1.2647	72	51.96	<.0001	0.05	63.1889	68.2311
Treatment	A2	63.4700	1.2647	72	50.19	<.0001	0.05	60.9489	65.9911
Treatment	A3	66.8200	1.2647	72	52.84	<.0001	0.05	64.2989	69.3411
Treatment	А4	62.1000	1.2647	72	49.10	<.0001	0.05	59.5789	64.6211
Treatment	A5	67.5400	1.2647	72	53.40	<.0001	0.05	65.0189	70.0611
Treatment	Аб	67.7600	1.2647	72	53.58	<.0001	0.05	65.2389	70.2811
Treatment	A7	66.4700	1.2647	72	52.56	<.0001	0.05	63.9489	68.9911
Treatment	A8	66.4700	1.2647	72	52.56	<.0001	0.05	63.9489	68.9911

Difference	s ofLeast S	quares Means		Standard					
Effect	Treatment	_Treatment	Estimate	Error	DF	t Value	Pr > t	Adjustment	Adj P
Treatment	A1	A2	2.2400	1.7885	72	1.25	0.2145	Tukey	0.9129
Treatment	A1	A3	-1.1100	1.7885	72	-0.62	0.5368	Tukey	0.9985
Treatment	A1	А4	3.6100	1.7885	72	2.02	0.0473	Tukey	0.4771
Treatment	A1	A5	-1.8300	1.7885	72	-1.02	0.3096	Tukey	0.9694
Treatment	A1	A6	-2.0500	1.7885	72	-1.15	0.2555	Tukey	0.9440
Treatment	A1	A7	-0.7600	1.7885	72	-0.42	0.6722	Tukey	0.9999
Treatment	A1	A8	-0.7600	1.7885	72	-0.42	0.6722	Tukey	0.9999
Treatment	A2	A3	-3.3500	1.7885	72	-1.87	0.0651	Tukey	0.5735
Treatment	A2	A4	1.3700	1.7885	72	0.77	0.4462	Tukey	0.9943
Treatment	A2	A5	-4.0700	1.7885	72	-2.28	0.0258	Tukey	0.3212
Treatment	A2	A6	-4.2900	1.7885	72	-2.40	0.0190	Tukey	0.2579
Treatment	A2	A7	-3.0000	1.7885	72	-1.68	0.0978	Tukey	0.7015
Treatment	A2	A8	-3.0000	1.7885	72	-1.68	0.0978	Tukey	0.7015
Treatment	A3	A4	4.7200	1.7885	72	2.64	0.0102	Tukey	0.1592
Treatment	A3	A5	-0.7200	1.7885	72	-0.40	0.6885	Tukey	0.9999
Treatment	A3	A6	-0.9400	1.7885	72	-0.53	0.6008	Tukey	0.9995
Treatment	A3	A7	0.3500	1.7885	72	0.20	0.8454	Tukey	1.0000
Treatment	A3	A8	0.3500	1.7885	72	0.20	0.8454	Tukey	1.0000
Treatment	A4	A5	-5.4400	1.7885	72	-3.04	0.0033	Tukey	0.0616
Treatment	A4	A6	-5.6600	1.7885	72	-3.16	0.0023	Tukey	0.0446
Treatment	A4	A7	-4.3700	1.7885	72	-2.44	0.0170	Tukey	0.2370
Treatment	A4	A8	-4.3700	1.7885	72	-2.44	0.0170	Tukey	0.2370
Treatment	A5	A6	-0.2200	1.7885	72	-0.12	0.9024	Tukey	1.0000
Treatment	A5	A7	1.0700	1.7885	72	0.60	0.5515	Tukey	0.9988
Treatment	A5	A8	1.0700	1.7885	72	0.60	0.5515	Tukey	0.9988
Treatment	A6	A7	1.2900	1.7885	72	0.72	0.4731	Tukey	0.9961

Name _____

Exam 3 Computer Output – Return with exam									
Treatment	A6	A8	1.2900	1.7885	72	0.72	0.4731	Tukey	0.9961
Treatment	A7	A8	-183E-15	1.7885	72	-0.00	1.0000	Tukey	1.0000
m eastment	21		2 2400	1 7005	70	1 05	0 0145	achaffa	0.0785
Treatment	AL N1	AZ	2.2400	1.7885	/2	1.25	0.2145	Scheffe	0.9/85
Treatment	AL N1	A3	-1.1100	1.7885	/2	-0.62	0.5368	Scheffe	0.9997
Treatment	AL	A4	3.6100	1.7885	/2	2.02	0.04/3	Scherre	0.7684
Treatment	AL	A5	-1.8300	1.7885	72	-1.02	0.3096	Scheffe	0.9935
Treatment	AL	A6	-2.0500	1.7885	72	-1.15	0.2555	Scherre	0.9872
Treatment	AL	A7	-0.7600	1.7885	72	-0.42	0.6722	Scheffe	1.0000
Treatment	Al	A8	-0.7600	1.7885	72	-0.42	0.6722	Scheffe	1.0000
Treatment	A2	A3	-3.3500	1.7885	72	-1.87	0.0651	Scheffe	0.8307
Treatment	A2	A4	1.3700	1.7885	72	0.77	0.4462	Scheffe	0.9990
Treatment	A2	A5	-4.0700	1.7885	72	-2.28	0.0258	Scheffe	0.6390
Treatment	A2	A6	-4.2900	1.7885	72	-2.40	0.0190	Scheffe	0.5723
Treatment	A2	A7	-3.0000	1.7885	72	-1.68	0.0978	Scheffe	0.8981
Treatment	A2	A8	-3.0000	1.7885	72	-1.68	0.0978	Scheffe	0.8981
Treatment	A3	A4	4.7200	1.7885	72	2.64	0.0102	Scheffe	0.4421
Treatment	A3	A5	-0.7200	1.7885	72	-0.40	0.6885	Scheffe	1.0000
Treatment	A3	Аб	-0.9400	1.7885	72	-0.53	0.6008	Scheffe	0.9999
Treatment	A3	A7	0.3500	1.7885	72	0.20	0.8454	Scheffe	1.0000
Treatment	A3	A8	0.3500	1.7885	72	0.20	0.8454	Scheffe	1.0000
Treatment	А4	A5	-5.4400	1.7885	72	-3.04	0.0033	Scheffe	0.2527
Treatment	A4	A6	-5.6600	1.7885	72	-3.16	0.0023	Scheffe	0.2065
Treatment	A4	A7	-4.3700	1.7885	72	-2.44	0.0170	Scheffe	0.5478
Treatment	А4	A8	-4.3700	1.7885	72	-2.44	0.0170	Scheffe	0.5478
Treatment	A5	A6	-0.2200	1.7885	72	-0.12	0.9024	Scheffe	1.0000
Treatment	A5	A7	1.0700	1.7885	72	0.60	0.5515	Scheffe	0.9998
Treatment	A5	A8	1.0700	1.7885	72	0.60	0.5515	Scheffe	0.9998
Treatment	Аб	А7	1.2900	1.7885	72	0.72	0.4731	Scheffe	0.9993
Treatment	Аб	A8	1.2900	1.7885	72	0.72	0.4731	Scheffe	0.9993
Treatment	A7	A8	-183E-15	1.7885	72	-0.00	1.0000	Scheffe	1.0000
Treatment	A1	A2	2,2400	1,7885	72	1.25	0.2145	Bonferroni	1,0000
Treatment	Δ1	A3	-1.1100	1.7885	72	-0.62	0.5368	Bonferroni	1.0000
Treatment	 A1	 A4	3,6100	1.7885	72	2.02	0.0473	Bonferroni	1.0000
Treatment	 A1	A5	-1.8300	1.7885	72	-1.02	0.3096	Bonferroni	1.0000
Treatment	Δ1	A6	-2 0500	1 7885	72	_1 15	0 2555	Bonferroni	1 0000
Treatment	Δ1	A7	-0 7600	1 7885	72	-1.13	0 6723	Bonferroni	1 0000
Treatment	Δ1	Δ <u>8</u>	-0 7600	1 7885	72	-0.42	0.6722	Bonferroni	1 0000
Troatmont	77 7	73	-3.2500	1 7005	72	-0.74	0.0722	Bonformoni	1 0000
rreatment	A4	AJ	-3.3500	T./000	14	-1.0/	0.0051	POULELLOUT	T.0000

Exam 3 Con	Exam 3 Computer Output – Return with exam Name								
Treatment	_A2	A4	1.3700	1.7885	72	0.77	0.4462	Bonferroni	1.0000
Treatment	A2	A5	-4.0700	1.7885	72	-2.28	0.0258	Bonferroni	0.7237
Treatment	A2	A6	-4.2900	1.7885	72	-2.40	0.0190	Bonferroni	0.5334
Treatment	A2	A7	-3.0000	1.7885	72	-1.68	0.0978	Bonferroni	1.0000
Treatment	A2	A8	-3.0000	1.7885	72	-1.68	0.0978	Bonferroni	1.0000
Treatment	A3	A4	4.7200	1.7885	72	2.64	0.0102	Bonferroni	0.2852
Treatment	A3	A5	-0.7200	1.7885	72	-0.40	0.6885	Bonferroni	1.0000
Treatment	A3	A6	-0.9400	1.7885	72	-0.53	0.6008	Bonferroni	1.0000
Treatment	A3	A7	0.3500	1.7885	72	0.20	0.8454	Bonferroni	1.0000
Treatment	A3	A 8	0.3500	1.7885	72	0.20	0.8454	Bonferroni	1.0000
Treatment	A4	A5	-5.4400	1.7885	72	-3.04	0.0033	Bonferroni	0.0919
Treatment	A4	A6	-5.6600	1.7885	72	-3.16	0.0023	Bonferroni	0.0637
Treatment	A4	A7	-4.3700	1.7885	72	-2.44	0.0170	Bonferroni	0.4761
Treatment	A4	A8	-4.3700	1.7885	72	-2.44	0.0170	Bonferroni	0.4761
Treatment	A5	A6	-0.2200	1.7885	72	-0.12	0.9024	Bonferroni	1.0000
Treatment	A5	A7	1.0700	1.7885	72	0.60	0.5515	Bonferroni	1.0000
Treatment	A5	A 8	1.0700	1.7885	72	0.60	0.5515	Bonferroni	1.0000
Treatment	Аб	A7	1.2900	1.7885	72	0.72	0.4731	Bonferroni	1.0000
Treatment	Аб	A 8	1.2900	1.7885	72	0.72	0.4731	Bonferroni	1.0000
Treatment	A7	A8	-183E-15	1.7885	72	-0.00	1.0000	Bonferroni	1.0000

Effect=Treatment ADJUSTMENT=Scheffe(P<0.05) bygroup=2</pre>

Obs	Treatment	Estimate	StdErr	Alpha	Lower	Upper	MSGROUP
9	A6	67.7600	1.2647	0.05	65.2389	70.2811	А
10	A5	67.5400	1.2647	0.05	65.0189	70.0611	А
11	A3	66.8200	1.2647	0.05	64.2989	69.3411	А
12	A8	66.4700	1.2647	0.05	63.9489	68.9911	А
13	A7	66.4700	1.2647	0.05	63.9489	68.9911	А
14	Al	65.7100	1.2647	0.05	63.1889	68.2311	А
15	A2	63.4700	1.2647	0.05	60.9489	65.9911	А
16	A4	62.1000	1.2647	0.05	59.5789	64.6211	А

Effect	=Treatment	ADJUSTMENT=Tuk	ey(P<0.05) ł	oygroup=1			
Obs	Treatment	Estimate	StdErr	Alpha	Lower	Upper	MSGROUP
17	A6	67.7600	1.2647	0.05	65.2389	70.2811	A
18	A5	67.5400	1.2647	0.05	65.0189	70.0611	AB
19	A3	66.8200	1.2647	0.05	64.2989	69.3411	AB
20	A8	66.4700	1.2647	0.05	63.9489	68.9911	AB
21	A7	66.4700	1.2647	0.05	63.9489	68.9911	AB
22	A1	65.7100	1.2647	0.05	63.1889	68.2311	AB
23	A2	63.4700	1.2647	0.05	60.9489	65.9911	AB
24	A4	62.1000	1.2647	0.05	59.5789	64.6211	в

Exam 3 Computer Output – Return with exam Name

Exam 3 Problem : Example with Homogeneous Variance

The UNIVARIATE Procedure Variable: Resid Moments 80 Sum Weights 80 Ν 0 Sum Observations 0 Mean Std Deviation 3.81800531 Variance 14.5771646 Skewness 0.73834537 Kurtosis -0.4680077 Uncorrected SS 1151.596 Corrected SS 1151.596 Coeff Variation Std Error Mean 0.42686597 Basic Statistical Measures Location Variability 0.00000 Std Deviation Mean 3.81801 -1.21500 Median Variance 14.57716 Mode -3.40000 Range 14.76000 Interquartile Range 5.21000 Note: The mode displayed is the smallest of 4 modes with a count of 2. Tests for Location: Mu0=0 Test -Statistic-----p Value-----Student's t Pr > |t|1.0000 t 0 Sign М -9 Pr >= |M|0.0567 Signed Rank S Pr >= |S|-140 0.5053 Tests for Normality Test --Statistic-------p Value-----Shapiro-Wilk W 0.921803 Pr < W0.0001 Kolmogorov-Smirnov Pr > D<0.0100 D 0.139157 Cramer-von Mises W-Sq 0.356387 Pr > W-Sq < 0.0050Anderson-Darling 2.173195 Pr > A-Sq <0.0050 A-Sq Stem Leaf Boxplot Normal Probability Plot 89 1 8.5+ 7 233579 6 6 046 3 5 178 3 3 024579 6 2 125 3 1.5+ 1 1238 4 0 45567 5 7 -0 7543321 -1 9999775554410 13 -2 9877655320 10

-2

-1

0

+1

+2

-5.5+

9 7

3

-3 774444311

----+

-4 6654110 -5 953

Exam 3 Computer Output – Return with exam Name Exam 3 Problem : Analysis of Variance with PROC GLM The GLM Procedure Class Level Information Class Levels Values A1 A2 A3 A4 A5 A6 A7 A8 Treatment 8 Number of Observations Read 80 Number of Observations Used 80 Dependent Variable: Y_Value Sum of Source DF Squares Mean Square F Value Pr > F2.49 0.0237 Model 7 279.339500 39.905643 72 1151.596000 15.994389 Error Corrected Total 79 1430.935500 Coeff Var Root MSE Y Value Mean R-Square 0.195215 6.078654 3.999299 65.79250 Source DF Type III SS Mean Square F Value Pr > F279.3395000 39.9056429 2.49 Treatment 7 0.0237 Duncan's Multiple Range Test for Y_Value NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 72 Error Mean Square 15.99439 Number of Means 2 3 3.565 3.751 3.874 3.964 4.033 4.089 4.135 Critical Range Means with the same letter are not significantly different. Duncan Grouping Ν Treatment Mean 67.760 10 Α A6 Α 67.540 10 A5 в Α 66.820 10 Α3 в 66.470 10 **A**8 Α в 66.470 10 A7 Α в Α C 65.710 10 A1 в C 63.470 10 A2

Α4

10

C

62.100

Exam 3 Computer Output – Return with exam Name

Exam 3 Problem : Analysis of Variance with PROC GLM

Tukey's Studentized Range (HSD) Test for Y_Value

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.

Alpha	0.05
Error Degrees of Freedom	72
Error Mean Square	15.99439
Critical Value of Studentized Range	4.41490
Minimum Significant Difference	5.5835

Means with the same letter are not significantly different.

Tu	key Grou	iping Mean	N	Treatment
	A	67.760	10	A6
в	A	67.540	10	A5
в	A	66.820	10	A3
в	A	66.470	10	A8
в	A	66.470	10	A7
в	A	65.710	10	Al
в	A	63.470	10	A2
в		62.100	10	A4

Scheffe's Test for Y_Value

NOTE: This test controls the Type I experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	72
Error Mean Square	15.99439
Critical Value of F	2.13966
Minimum Significant Difference	6.9218

Means with the same letter are not significantly different.

Scheffe Grouping

	Mean	N	Treatment
Α	67.760	10	A6
Α	67.540	10	A5
А	66.820	10	A3
A	66.470	10	A8
A	66.470	10	A7
A	65.710	10	A1
A	63.470	10	A2
А	62.100	10	A4

Exam 3 Computer Output – Return with exam Name Exam 3 Problem : Analysis of Variance with PROC GLM The GLM Procedure Levene's Test for Homogeneity of Y_Value Variance ANOVA of Squared Deviations from Group Means Sum of Mean DF Square F Value Pr > FSource Squares 7 2279.8 325.7 1.05 0.4056 Treatment Error 72 22364.9 310.6 O'Brien's Test for Homogeneity of Y_Value Variance ANOVA of O'Brien's Spread Variable, W = 0.5 Sum of Mean DF F Value Source Squares Square Pr > FTreatment 7 2814.5 402.1 0.93 0.4898 72 31170.2 432.9 Error Brown and Forsythe's Test for Homogeneity of Y_Value Variance ANOVA of Absolute Deviations from Group Medians Sum of Mean Source \mathbf{DF} Squares Square F Value Pr > F7 18.9995 2.7142 0.30 0.9503 Treatment 72 8.9524 Error 644.6 Bartlett's Test for Homogeneity of Y_Value Variance Source DF Chi-Square Pr > ChiSq7 Treatment 5.6876 0.5767 Welch's ANOVA for Y_Value DF F Value Source Pr > F7.0000 3.34 Treatment 0.0091 Error 30.7198 The GLM Procedure

	Y_Value		
N	Mean	Std Dev	
10	65.7100000	4.53809799	
10	63.4700000	3.91153565	
10	66.8200000	2.93779963	
10	62.1000000	2.62043253	
10	67.5400000	4.74791182	
10	67.7600000	4.92548926	
10	66.4700000	4.11718620	
10	66.4700000	3.57896633	
	N 10 10 10 10 10 10 10 10	N Mean 10 65.7100000 10 63.4700000 10 66.8200000 10 62.1000000 10 67.5400000 10 66.4700000 10 66.4700000	