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Summary data 

 

Intermediate Calculations  
   X = 83     Y = 228 
   X2 = 521     Y2 = 3628 
  Mean of Xi = X = 5.1875    Mean of Yi = Y = 14.25 
   XY = 1348    n = 16 
 

 Correction factors and Corrected values (Sums of squares and crossproducts) 
  CF for X  Cxx = 430.5625  Corrected SS X Sxx = 90.4375 
  CF for Y  Cyy = 3249   Corrected SS Y Syy = 379 
  CF for XY Cxy = 1182.75   Corrected CP XY Sxy = 165.25 
 

ANOVA Table (values needed):  SSTotal = 379 
     SSRegression = 165.252 / 90.4375 = 301.9495508 

     SSError = 379  –  301.9495508 = 77.05044921 
 

 

Model Parameter Estimates 
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  so 
1

5.5036

90.4375bS   = 0.2467  

 

Confidence interval on b1  where  b
1
 = 1.827228749 and t

(0.05/2, 14df)
 = 2.145  

P(1.827228749 – 2.145*0.246688722 1  1.827228749 + 2.145*0.246688722) = 0.95 

P(1.29808144 
1
  2.356376058) = 0.95  

 

Testing b1 against a specified value:   e.g.   H0: 
1
 = 5 versus H1: 

1
  5  

Sum 83 228 521 3628 1348
Mean 5.1875 14.25 32.5625 226.75 84.25

n 16 16 16 16 16

Source df SS MS F 
Regression 1 301.9495508   301.9495508     54.8639723 
Error 14 77.05044921 5.503603515  
Total 15 379.                  Tabular F0.05; 1, 14 = 4.600 

    Tabular F0.01; 1, 14 = 8.862 



Statistical Methods I (EXST 7005)  Page 148 

James P. Geaghan Copyright 2012 

 where b
1
 = 1.827228749, S

b1
  = 0.246688722 and t

(0.05/2, 14df)
 = 2.145  

 =  (1.827228749  –  5) /  0.246688722 =   – 12.86144 
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Standard error of b
0
 is the same as the standard error of the regression line where X

i
 = 0 

Square Root of [5.503603515 (0.0625 + 26.91015625/90.4375)] = 1.407693696 

 

Confidence interval on b
0
, where b0 = 4.771250864 and t

(0.05/2, 14df)
 = 2.145 

P(4.771250864  –  2.145*1.407693696 0 4.771250864+2.145*1.407693696) = 0.95 

P(1.751747886 
0
 7.790753842) = 0.95  

 

Estimate the standard error of an individual observation for number of parasites for a ten-year-

old fish:  0 1 iY b b X


  =4.77125 + 1.82723*X=4.77125 + 1.82723*10 = 23.04354   

Square Root of [ 5.503603515*(1+0.0625+(10 – 5.1875)2/90.4375)] =  
Square Root of [ 5.503603515*(1+0.0625+(23.16015625)/90.4375)] = 2.693881509 

 

Confidence interval on 
Y|X=10

    

P(23.04353836 – 2.145*2.693881509   Y|X=10   23.04353836+2.145*2.693881509) = 0.95 

  P(17.26516252   
Y|X=10

   28.82191419) = 0.95  

 

Calculate the coefficient of Determination and correlation  

 R2 = 0.796700662  or  79.67006617 % 
 r = 0.892580899 

 

See SAS output 

Overview of results and findings from the SAS program  
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I. Objective 1 : Determine if older fish have more parasites. (SAS can provide this) 

A. This determination would be made by examining the slope.  The slope is the mean change in 
parasite number for each unit increase in age.  The hypothesis tested is H0: 1=0 versus H1: 
10  

1. If this number does not differ from zero, then there is no apparent relationship between age 
and number of parasites.  If it differs from zero and is positive, then parasites increase with 
age.  If it differs from zero and is negative, then parasites decrease with age.   

2. For a simple linear regression we can examine the F test of the model, the F test of the 
Type I, the F test of the Type II, the F test of the Type III or the t-test of the slope.  For a 
simple linear regression these all provide the same result.  For multiple regressions (more 
than 1 independent variable) we would examine the Type II or Type III F test (these are the 
same in regression) or the t-test of regression coefficients.  [Alternatively, a confidence 
interval can be placed on the coefficient, and if the interval does not include 0, the estimate 
of the coefficient is significantly different from zero].   

B. In this case, the F tests mentioned had values of 54.86, and the probability of this F value with 
1 and 14 d.f. is less than 0.0001.  Likewise, the t test of the slope was 7.41, which was also 
significant at the same level.  Note that t2=F, these are the same test.  We can therefore 
conclude that the slope does differ from zero.  Since it is positive we further conclude that 
older fish have more parasites.   

 
II. Objective 2 : Estimate the rate of accumulation of parasites. (SAS can provide this) 

A. The slope for this example is 1.827228749 parasites per year (note the units).  It is positive, so 
we expect parasite numbers to increase by 1.8 per year.   

B. The standard error for the slope was 0.24668872.  This value is provided by SAS and can be 
used for hypothesis testing or confidence intervals.  SAS provides a t-test of H0: 1=0, but 
hypotheses about values other than zero must be requested (SAS TEST statement) or 
calculated by hand.  The confidence interval in this case is:  This calculation was done 
previously and is partly repeated below.   

  P[b1  –  t/2,14 d.f. Sb1  1  b1 + t/2,14 d.f. Sb1]=0.95 

  P[1.827228749  –  2.144789(0.246689)  1  1.827228749 + 
2.144789(0.246689)]=0.95 

  P[1.298134  1  2.356324]=0.95    

Note that this confidence interval does not include zero, so it differs significantly from zero.   
III. Estimate the intercept with confidence interval.  

A. The intercept may also require a confidence interval.  This was calculated previously and was;  

  P(1.751747886  
0
    7.790753842) = 0.95 
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IV. Determine how many parasites a 10 year old fish would have. (SAS can provide this) 

A. Estimating a Yi value for a particular Xi simply requires solving the equation for the line with 

the 0 1 iY b b X


  which for coefficients of 4.771 and 1.827 and for a 10-year-old fish (Xi=10) 

is Y


=4.771+1.827(10) = 4.771+18.27 = 23.041.   

V. Place a confidence interval on the 10 year old fish estimate.  (SAS can provide this) 

A. The confidence interval for this was estimated previously: 
P(17.26516252

x=10
28.82191419)=0.95.   

B. There are many reasons why this type of calculation may be of interest.  We can place a 
confidence interval on any value of Xi, including the intercept where Xi=0 (this was done 
previously).  The intercept is often the most interesting point on the regression line, but not 
always.   

C. There is one very special characteristic of the confidence intervals (of either individual points 
or means).  The confidence interval is narrowest at the mean of Xi, and gets wider to either 
side of the mean.  The graph below for out example demonstrates this property.   

D.  

Regression with confidence bands
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VI. Determine if a linear model is adequate and assumptions met. (SAS can provide most of this) 

A. Independence : This is a difficult assumption to evaluate.  There are some techniques in 
advanced statistical methods, but these will not be covered here.  The best guarantee for 
independence is to randomize wherever and whenever possible.    

B. Normality : The normality of the “residuals” or deviations from regression can be evaluated 
with the PROC UNIVARIATE Shapiro-Wilks test.  The W value was 0.96 and the P<W was 
0.6831.  We would not reject the null hypothesis of “data is normality distributed”  with these 
results.   
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Homogeneity and other considerations : Residual plots are an important tool in evaluating 
possible problems in regression, some of which we have not seen before.  The normal residual 
plot, when all is well, should reflect just random scatter about the regression line.  An 

example is given below.     

Residual Plot
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The three residual plots below all show possible problems.  From left to right the problems 
indicated are (1) the data is curved and cannot be adequately described by a straight line, (2) 
the variance is not homogeneous and (3) there is an outlier.  
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An outlier is an observation which appears to be too large or too small in comparison to the other 
values.  Data should be checked carefully to insure that the point is correct.  If it is correct, but 
is way out of line relative to other values. it may be necessary to omit the point.   

The residual plot for our example is given below.  Can you detect any potential problems? 
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VII. An old published article states that the rate of accumulation should be about 5 per year.  Test 
our estimate against 5. . (SAS can provide this if you ask nicely) 

A. SAS automagically test the hypothesis that H0: 1=0.  However, any value can be tested.  The 

test is the usual one-sample t-test, 0

1
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b

b b
t

S


 ,where 

 1 2
.

1

MSE MSE
Sb n SxxX Xi

i

 




as previously 

mentioned.  For this example, 
1.827 5

0.2467
t


  

VIII. Final notes on regression and correlation.  (SAS can provide most of this)  

A. The much over-rated R2.  The regression accounts for a certain fraction of the total SS.  The 
fraction of the total SS that is accounted for by the regression is called coefficient of 
determination and is denoted “R2”.  It is calculated as R2=SSReg/SSTotal.  This value is usually 
multiplied by 100 and expressed as a percent.  For our example the value was 79.7% of the 
total variation accounted for by the model.  This is pretty good, I guess.  However, for some 
analyses we expect much higher (length - weight relationships for example) and for others 
much lower (try to predict how many fish you will get in a net at a particular depth or for a 
particular size stream).  This statistic does not provide any test, but may be useful for 
comparing between similar studies on similar material.   

B. The square root of the R2 value is equal to the “Pearson product moment correlation” 
coefficient, usually denoted a “r”.  This value is calculated as 
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 and is equal to 0.8926 for our example.   

C. The correlation coefficient is “unitless” and ranges from -1 to +1.   

D. A perfect inverse correlation gives a value of -1.  This corresponds to a negative slope in 
regression, but the R2 value will not reflect the negative because it is squared.  A perfect 
correlation gives a value of +1 (positive slope in regression).  A correlation of zero can be 
represented as random scatter about a horizontal line (slope = 0 in regression).  
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Perfect inverse correlation

 X

Y

Perfect correlation
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E. The perfect correlation value of 1 (+ or  – ) also corresponds to a “perfect” regression, where 
the R2 value would indicate that 100% of the variation in the total was accounted for by the 

model.  The error in this case would be zero.  X

Y

Correlation = 0

 

About Cross products 

Cross products, i iX Y ,are used in a number of related calculations.  Note from the calculations 

below that when any of the calculations equals zero, all of the others will also go to zero.  As 
a result when the covariance is zero the slope, correlation coefficient, R2 and SSRegression 
are also zero.  As a result of this, the common test of hypothesis of interest in regression, 

0 1H : 0  , can be tested by testing any of the statistics below.  A t-test of the slope or an F 

test of the MSRegression are both testing the same hypothesis.  Recall that we saw that from 
the interrelationships of probability distributions that a t2 with d.f. = F with 1, d.f.   
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Summary 

Regression is used to describing a relationship between two variables using paired observations 
from the variables.  

The intercept is the point where the line crosses the Y axis and the slope is the change in Y per unit 
X.  

Variance is derived from the sum of squared deviations from the regression line.  

The regression model is given by  

The population regression model is given by 0 1 =   i i iY X     for observations and 

. 0 1 =   y x iX    for the regression line itself.     

Estimated from a sample the regression line is 0 1
ˆ     i iY b b X   

There are four assumptions usually made for a regression, 

1) Normality (at each value of Xi),  

2) Independence (1) of the observations (Yi, Yj) from each other and (2) of the deviations (eij) 
from the rest of the model).   

3) Homogeneity of variance at each value of Xi.   

4) The Xi values are measured without error (i.e. all variation and deviations is vertical).   
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Multiple Regression 

The objectives are the same as for simple linear regression, the testing of hypotheses about 
potential relationships (correlation), fitting and documenting relationships, and estimating 
parameters with confidence intervals.  

The big difference is that a multiple regression will correlate a dependent variable (Yi) with 
several independent variables (Xi's).  

The regressions equation is similar.  The sample equation is 0 1 1 2 2 3 3i i i i iY X X X          

The assumptions for the regression are the same as for Simple Linear Regression  

The degrees of freedom for the error in a simple linear regression were n – 2, where the two 
degrees of freedom lost from the error represented one for the interecept and one for the slope.  
In multiple regression the degrees of freedom are n – p, where “p” is the total number of 
regression parameters fitted including one for the intercept.   

The interpretation of the parameter estimates are the same (units are Y units per X units, and 
measure the change in Y for a 1 unit change in X).  

Diagnostics are mostly the same for simple linear regression and multiple regression.  

Residuals can still be examined for outliers, homogeneity, curvature, etc. as with SLR. The 
only difference is that, since we have several X's, we would usually plot the residuals on 

Yhat ( îY ) instead of a single X variable.   

Normality would be evaluated with the PROC UNIVARIATE test of normality.   

There is only really one new issue here, and this is in the way we estimate the parameters.  

If the independent (X) variables were totally and absolutely independent (covariance or 
correlation = 0), then it wouldn't make any difference if we fitted them one at a time or all 
together, they would have the same value.  However, in practice there will always be some 
correlation between the X variables.   

If two X variables were PERFECTLY correlated, they would both account for the SAME 
variation in Y, so which would get the variation?   

If two X variables are only partially correlated they would share part of the variation in Y, 
so how is it partitioned?   

To demonstrate this we will look at a simple example and develop a new notation called the 
Extra SS.   

For multiple regression there will be, as with simple linear regression, a SS for the “MODEL”.   
This SS lumps together all SS for all variables.  This is not usually very informative.  We 
will want to look at the variables individually.  To do this there are several types of SS 
available in SAS, two of which are of particular interest, TYPE 1 and TYPE 3 SS.    

In PROC REG these are not provided by default.  To see them you must request them.  
This can be done by adding the options SS1 and/or SS2 to the model statement.   For 
regression the SS Type II and SS Type III are the same.   

In  PROC GLM, which will do regressions nicely, but has fewer regression diagnostics 
than PROC REG, the TYPE 1 and TYPE 3 SS are provided by default.   
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To do multiple regression in SAS we simply specify a model with the variables of interest.  

For example, a regression on Y with 3 variables X1, X2 and X3 would be specified as  

PROC REG; MODEL Y = X1 X2 X3;  

To get the SS1 and SS2 we add  

PROC REG; MODEL Y = X1 X2 X3 /ss1 ss2;  

Example with Extra SS 

The simple example is done with created data set.  

Y X1 X2 X3 
1 2 9 2 
3 4 6 5 
5 7 7 9 
3 3 5 5 
6 5 8 9 
4 3 4 2 
2 2 3 6 
8 6 2 1 
9 7 5 3 
3 8 2 4 
5 7 3 7 
6 9 1 4 

 

Now let’s look at simple linear regressions for each variable independently, first for variable 
X1.  If we do a simple linear regression on X1 we get the following result.  The SSTotal is 
62.91667, and this will not change regardless of the model since it is adjusted only for the 
intercept and all models will include an intercept.   

If we fit a regression of Y on X1 the result is SSModel = 23.978, so the sum of squared 
accounted for by X1 when it enters alone is 23.978.  If we fit X2 alone, the result is 
SSModel = 4.115.   

If we then fit both X1 and X2 together, would the resulting model SS be 23.978 + 4.115 = 
28.093?  No, the model actually comes out to be 24.074 because of some covariance 
between the two variables.   

So how much would X1 add to the model if X2 was fitted first and how much would X2 add 
if X1 was fitted first?  We can calculate the extra SS for X1, fitted after X2, and for X2 
fitted after X1.  The variable X2 alone accounted for a sum of squares equal to 4.115 
and when X1 was added the SS accounted for was 24.074, so X1 entering after X2 
accounted for an additional 24.074 – 4.115 = 19.959.  Therefore, we can state that the 
SS accounted for by X1, entering the model after X2, is 19.959.    

Likewise, we can calculate the SS that X2 accounted for entering after X1.  Together they 
account for SS = 24.074 and X1 alone accounted for 23.978, so X2 accounted for an 
additional SS = 24.074 – 23.978 = 0.096 when it entered after X1.    

We need a simpler notation to indicate the sum of square for each variable and which other 
variables have been adjusted for before it enters the model.  The sum of squares for X1 
and X2 entering alone will be SSX1 and SSX2, respectively.  When X1 is adjusted for 
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X2 and vice versa the notation will be SSX1|X2 and SSX2|X1, respectively.  For the 
calculations above the results were:  SSX1 = 23.978, SSX2 = 4.115, SSX1|X2 = 
19.959 and SSX2|X1 = 0.096.   

Finally, consider a model fitted on all three variables.  A model fitted to X2 and X3, without 
X1, yields SSModel = 4.137.  When X1 is added to the model, so that all 3 variables are 
now in the model the, the SS accounted for is 26.190.  How much of this is due to X1 
entering after X2 and X3 are already in the model?  Calculate 26.190 – 4.137 = 22.053.  
This sum of squares is denoted SSX1|X2, X3.  In summary, X1 accounts for 23.978 
when it enters alone, 19.959 when it enters after X2 and 22.053 when it enters after 
both X2 and X3 together.  Clearly, how much variation X1 accounts for depends on 
what variables are already in the model, so we cannot just talk about the sum of 
squares for X1.   

We can use the new notation to describe the sum of squares for X1 that indicates which 
other variable are in the model.  This is the notation of the extra sum of squares.  The 
notation is (SSX1) for X1 alone in the model (adjusted for only the intercept), 
(SSX1|X2) indicating X1 adjusted for X2 only, and (SSX1|S2, X3) indicating that X1 is 
entered after, or adjusted for, both X2 and X3.  For our example;  

SSX1 = 23.978  

SSX1|X2=19.959 

SSX1|X2, X3 = 22.053   

The same procedure would be done for each of the other two variables.  We would calculate the 
same series of values for the variable X2;  SSX2, SSX2|X1 or SSX2|X3 and SSX2|X1, X3.  
The series for variable X3 would be; SSX3, SSX3|X1 or SSX3|X2 and SSX3|X1, X3.  
These values are given in the table below.   

Extra SS SS d.f. Error Error SS 
SSX1 23.978 10 38.939 
SSX2 4.115 10 58.802 
SSX3 0.237 10 62.680 
SSX1|X2 19.959 9 38.843 
SSX2|X1 0.096 9 38.843 
SSX1|X3 25.134 9 37.546 
SSX3|X1 1.393 9 37.546 
SSX2|X3 3.900 9 58.780 
SSX3|X2 0.022 9 58.780 
SSX1|X2,X3 22.053 8 36.727 
SSX2|X1,X3 0.819 8 36.727 
SSX3|X1,X2 2.116 8 36.727 

 

All of these SS are previously adjusted only for the intercept (X0, the correction factor), 
and this will always be the case for our examples. We could include a notation for 
the intercept in the extra SS (e.g. SSX1|X0; SSX1|X0, X2; SSX1|X0, X2, X3; etc.), 
but since X0 would always present we will omit this from our notation.   
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Partial sums of squares or Type II SS  

With so many possible sums of squares which ones are will be useful to us?    The sums of squares 
normally used for a multiple regression is called the partial sum of squares, the sum of squares 
where each variable is adjusted for all other variables in the model.  These are SSX1|X2,X3; 
SSX2|X1,X3; and SSX3|X1,X2.  This type of sum of squares is sometimes called the fully 
adjusted SS, or uniquely attributable SS.  In SAS they are called the TYPE II or TYPE III 
sum of squares since these two types are the same for regression analysis.  SAS provides 
TYPE II in PROC REG and TYPE III in PROC GLM by default. Testing and evaluation of 
variables in multiple regression is usually done with the TYPE II or TYPE III SS.  

ANOVA table for this analysis (F0.05,1,8=5.32), using the TYPE III SS (Partial SS).  

Source d.f. SS MS F value 
SSX1|X2,X3 1 22.053 22.053 4.804 
SSX2|X1,X3 1 0.819 0.819 0.178 
SSX3|X1,X2 1 2.116 2.116 0.461 
ERROR 8 36.727 4.591  

 

Sequential sums of squares or Type I SS 

When we fit regression, we are interested in one of two types of SS, normally the partials sum of 
squares.  There is another type of sum of squares called the sequentially adjusted SS.  These 
sum of squares are adjusted in a sequential or serial fashion.  Each SS is adjusted for the 
variables previously entered in the model, but not for variables entered after, so it is important 
to note the order in which the variables are entered in the model.  For the model [Y = X1 X2 
X3], X1 would be first and adjusted for nothing else (except the intercept X0).  X2 would enter 
second, be adjusted for X1, but not for X3.  X3 enters last and is adjusted for both X1 and X2.  
Using our extra SS notation these are SSX1; SSX2|X1 and SSX3|X1,X2.  

These sums of squares have a number of potential problems. Unfortunately, the SS are different 
depending on the order the variables are entered, so different researchers would get different 
results. As a result the use of this SS type is rare and is only used where there is a 
mathematical reason to place the variables in a particular order. Its use is restricted pretty 
much to polynomial regressions which use a series of power terms (e.g. 

2 3
0 1 2 3i i i i iY X X X         ) and some other odd applications (e.g. in some cases 

Analysis of Covariance).  Investigators sometimes feel that they know which variables are 
more important but this is not justification for using sequential sums of squares.  So, we will 
not use sequential SS at all, but they are provided by default by SAS PROC GLM.  

Multiple Regression with SAS 

This same data set was run with SAS.  The program was 



Statistical Methods I (EXST 7005)  Page 159 

James P. Geaghan Copyright 2012 

**********************************************; 
*** EXST7005 Multiple Regression Example 1 ***; 
**********************************************; 
 
OPTIONS LS=78 PS=78 NODATE nocenter nonumber; 
DATA ONE; INFILE CARDS MISSOVER; 
 TITLE1 'EXST7005 MULTIPLE REGRESSION EXAMPLE #1'; 
 INPUT Y X1 X2 X3; 
CARDS; 
PROC PRINT DATA=ONE;  
   TITLE2 'Data Listing'; RUN; 

See SAS output in Appendix 8  

Note: 

The PROC REGRESSION section 

PROC REG DATA=ONE LINEPRINTER;  
     TITLE2 'Analysis with PROC REG'; 
   MODEL Y = X1 X2 X3; 
      OUTPUT OUT=NEXT P=P R=E STUDENT=student  
             rstudent=rstudent  
             lcl=lcl lclm=lclm ucl=ucl uclm=uclm; 
RUN; OPTIONS PS=35; TITLE2 'Residual plot'; 
   PLOT RESIDUAL.*PREDICTED.='E'; 
RUN; QUIT; 

The overall model  

Statistics for the individual variables  

The residual plot  

Residuals, confidence intervals and univariate analysis 

proc print data=next;  
   var Y X1 X2 X3 P E student rstudent lcl ucl lclm uclm; 
run; 
OPTIONS PS=61; 
PROC UNIVARIATE DATA=NEXT NORMAL PLOT;  
   VAR E; RUN; 

Output from proc print, in particular the interpretation of the variables:  student,  
rstudent, lcl, ucl, lclm and uclm 

Output from proc univariate, especially the test of normality  

This same analysis was done with GLM 

PROC GLM DATA=ONE;  
   TITLE2 'Analysis with PROC GLM'; 
   MODEL Y = X1 X2 X3; 
 RUN; QUIT; 
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The results are the same, we only want to look at the Type I and Type III SS.  

Evaluation of Multiple Regression 

If your objective is to test the 3 variables jointly ( 0 1 2 3H : 0,  0 and 0     ) or individually 

( 0H : 0i  ), you are done at this point.  None of the variables is significantly different from 

zero.   

If, however, your objective is to develop the simplest possible, most parsimonious model, you 
may delete the variables one at time.  Why one at a time?  Because when you remove a 
variable everything changes since they are adjusted for each other.  We would remove the 
least significant variable (the one with the smallest F value).  In this case that first step would 
be to remove X2.  

ANOVA table for analysis of the variables X1 and X3 alone. (F0.05,1,9 = 5.117).  Note that X1 is now 
significant, but X3 is not and may be removed as step 2.  

Source d.f. SS MS F value 
SSX1|X3 1 25.134 25.134 6.024 
SSX3|X1 1 1.393 1.393 0.334 
ERROR 9 37.546 4.172  

 

The variable X1 is still significant. (F0.05,1,10 = 4.965)   

Source d.f. SS MS F value 
SSX1 1 23.977 23.977 6.158 
ERROR 10 38.939 3.894  

 

This one at a time variable removal process is called “stepwise regression”.  More specifically, 
it would be called backward selection stepwise regression.  It is called backward because it 
starts with a full model and removes one variable at at time.  There also exist a forward 
stepwise regression where the best single variable is found to start with and additional 
variables are added to the model if they meet the significance requirements.   

Multiple Regression with SAS (see SAS output in Appendix 9)  

SAS has a program for stepwise model development.  This is accomplished with PROC REG, 
with the specification of a selection option.  

PROC REG DATA=ONE LINEPRINTER;  
     TITLE2 'Stepwise analysis with PROC REG'; 
   MODEL Y = X1 X2 X3 / selection=backward; 
RUN; 
 

In the initial step (STEP 0) the full, 3-parameter model is fitted, and the parameter 
estimates are evaluated.  
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Backward Elimination: Step 0 
All Variables Entered: R-Square = 0.4163 and C(p) = 4.0000 
 
Analysis of Variance 
                          Sum of       Mean 
Source            DF     Squares     Square   F Value   Pr > F 
Model              3    26.18995    8.72998      1.90   0.2078 
Error              8    36.72672    4.59084 
Corrected Total   11    62.91667 
 

Step 1 is the first removal, in this case of the variable X2.  The results for the remaining variables 
are then given.  . 

Backward Elimination: Step 1 

Variable X2 Removed: R-Square = 0.4032 and C(p) = 2.1784 
 
                              Sum of         Mean 
Source              DF      Squares       Square    F Value    Pr > F 
Model                2     25.37078     12.68539       3.04    0.0980 
Error                9     37.54588      4.17176 
Corrected Total     11     62.91667 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
Intercept      1.91576      1.73473      5.08794     1.22  0.2981 
X1             0.63161      0.25732     25.13390     6.02  0.0365 
X3            -0.13650      0.23621      1.39316     0.33  0.5775 
 

Step 2 is the next removal (if needed), in this case of the variable X3.  The result for the remaining 
variable is then given.  

Backward Elimination: Step 2 

Variable X3 Removed: R-Square = 0.3811 and C(p) = 0.4819 
 
                             Sum of         Mean 
Source              DF      Squares       Square    F Value    Pr > F 
Model                1     23.97763     23.97763       6.16    0.0325 
Error               10     38.93904      3.89390 
Corrected Total     11     62.91667 
 
             Parameter     Standard 
Variable      Estimate        Error   Type II SS  F Value  Pr > F 
Intercept      1.37613      1.41242      3.69640     0.95  0.3529 
X1             0.61089      0.24618     23.97763     6.16  0.0325 
 

Finally SAS prints a summary of variable removals.  
All variables left in the model are significant at the 0.1000 level. 
 
                       Summary of Backward Elimination 
       Variable    Number    Partial     Model 
Step   Removed     Vars In   R-Square   R-Square    C(p)     F Value   Pr > F 
  1    X2              2      0.0130     0.4032     2.1784      0.18   0.6838 
  2    X3              1      0.0221     0.3811     0.4819      0.33   0.5775 

Interpretation of regression 

Objectives can vary in regression.  You may be interested in testing the correlations (actually 
“partial” correlations due to the adjustment of one variable for another), or you may be 
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interested in the parameter estimates and the resulting model (the full model or the reduced 
model from stepwise).   Most aspects of the evaluation are similar to what we observed with 
simple linear regression.   

The parameter estimates are interpreted as before, the change in Y per unit X.  Of course, now 
they are adjusted for other effects.   

Standard errors are provided for confidence intervals, as well as a test of each regression 
coefficient against 0 (zero).  

Confidence intervals are placed on the parameters the same as with SLR although the 
calculations differ.   

The d.f. for the t value is based on the MSE (for the final model) as with simple linear 
regression.  The parameter and standard errors can be estimated in SAS.  

Residual evaluation is very similar to SLR, but residuals are usually plotted on Yhat instead of 
X, since there are several independent variables (i.e. X's).  

Evaluation of the residuals using PROC UNIVARIATE for testing normality and outlier 
detection is the same as for SLR.  

Fully adjusted SS also mean fully adjusted regression coefficient (also partial reg. coeff.). SAS 
REG does not give tests of SS like GLM, but the tests of the i values are the same as the 
tests of the Type III SS. 

There are a few things that are different.  

The R2 value is now called the coefficient of multiple determination (instead of the coefficient 
of determination).   

As discussed, we now evaluate SS for the individual variables.  Note that the tests of TYPE III 
SS are identical to the tests of the regression coefficients (see GLM handout).  PROC REG 
does only the latter, and will not do the former.  

There is a suite of new diagnostics for evaluating the multiple independent variables and their 
interrelations. We will not discuss these, except to say that if the independent variables are 
highly correlated with each other (a correlation coefficient, r, of around 0.9), then the 
parameter estimates can fluctuate wildly and 
unpredictably and may not be useful.   

Also note a curious behavior of the variables when they 
occur together. When one independent variable Xi is 
adjusted for another, sometimes it's SS are larger 
than what it would be for that variable alone and 
sometimes athe SS are smaller.  This is 
unpredictable and can go either way.  For example. 
The SSX1 was 23.978 when the variable was alone, 
but dropped to 19.959 when adjusted for X2, and 
increased to 25.134 when adjusted for X3.  It 
dropped to 22.053 when adjusted for both.  In 
essence the variables sometimes compete with each 
other for sums of squares and at other times 
enhance each others ability to account for sums of 
squares.   

Extra SS SS
SSX1 23.978
SSX2 4.115
SSX3 0.237
SSX1|X2 19.959
SSX2|X1 0.096
SSX1|X3 25.134
SSX3|X1 1.393
SSX2|X3 3.900
SSX3|X2 0.022
SSX1|X2,X3 22.053
SSX2|X1,X3 0.819
SSX3|X1,X2 2.116
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Adjusted SS 

Not only will the SS of one variable increase or decrease as other variables are added, the 
regression coefficient values will change.  They may even change sign, and hence 
interpretation.  Although the interpretation does not usually change, sometimes variables in 
combination do not necessarily have the same interpretation as they might have had when 
alone.   

Summary 

Multiple regression shares a lot in interpretation and diagnostics with SLR.  

Most diagnostics are the same as with SLR. 

The coefficients and sums of squares of the variables should be adjusted for each other.  This is 
the sequential sum of squares or the Type II SS  or Type III SS in SAS.  This is the big and 
important difference from SLR.   

 




