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A factorial is a way of entering two or more treatments into an analysis. 

The description of a factorial usually includes a measure of size, a 2 by 2, 3 by 4, 6 by 3 by 4, 2 
by 2 by 2, etc.  

Interactions were discussed.  

Interactions test additivity of the main effects 

Interactions are a measure of inconsistency in the behavior or the cells relative to the main 
effects.  

Interactions are tested along with the main effects 

Interactions should not be ignored if significant.  

Factorial analyses can be done as two-way ANOVAs in SAS, or they can be done as contrasts.   
 

The Randomized Block Design 

This analysis is similar in many ways to a “two-way” ANOVA 

The CRD is defined by the linear model,
 ij i ijY      .  The simplest version of the CRD has 

one treatment and one error term.  The factorial treatment arrangement discussed previously 
occurred within a CRD, and it had several different treatments, 1 2 1 2ijk i j i j ijkY           .  

This model has two treatments and one error.  It could have many more treatments, and it 
would still be a factorial design.  Designs having a single treatment or multiple treatments can 
all occur within a CRD and are referred to as different treatment arrangements.  

There are other modifications of a CRD that could be done.  Instead of multiple treatments we 
may find it necessary to subdivide the error term.   

Why would we do this?  Perhaps there is some variation that is not of interest.  If we ignore it, 
that variation will go to the error term.  For example, suppose we had a large agricultural 
experiment, and had to do our experiment in 8 different fields, or due to space limitations 
in a greenhouse experiment we had to separate our experiment into 3 different greenhouses 
or 5 different incubators.  Now there is a source of variation that is due to different fields, 
or different greenhouses or incubators!   

If we do it as a CRD, we put our treatments in the model, but if there is some variation due to 
field, greenhouse or incubator it will go to the error term. This would inflate our error term an 
make it more difficult to detect a difference (we would lose power).  

How do we prevent this?  First, make sure each treatment occurs in each field, greenhouse or 
incubator (preferably balanced).  Then we would factor the new variation out of the error 
term by putting it in the model.  

ijk i j i j ijkY            

This is not a new treatment.  We will call it a BLOCK.  This looks like a factorial, but it is not 
because the blocks are not a source of variation that we are interested in discussing.  

Also, in a factorial the interaction term is likely to be something of interest.  In a block design 
the interaction is an error term, representing random variation of experimental units across 
treatments.  
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Another difference, treatments can be either fixed or random.  If both treatments are fixed, the 
interaction is fixed.  However, blocks are usually random, and the block interaction is 
always random.  

So why are we blocking?  

It is usually used to add replication to an experiment.  Additional replicates are added in 
another field, another greenhouse.  On the one hand, the larger experiment should add 
power.  On the other hand, if we do not take measures to keep the new variation out of the 
error term, we may lose power due to the larger error.  

So, how does this affect our analysis?   

We still have treatments with the test of treatments in the ANOVA (an F test).   

We can still do post-hoc tests on the treatments.  

There is only one new issue, the error term.  To examine this we will need to look at the 
expected mean squares (EMS) for the Randomized Block Design.  

RBD EMS 

We will examine two possible types of models.  

In the first model we have treatments and blocks and nothing else.  Each treatment occurs in each 
block ONCE.  The experiment is similar to a factorial in some regards, but not many.  

 

The model is 

ij i j ijY         

In this model the error term (ij) actually comes from the block by treatment interactions (ij).  
This is the only error available, but that is OK.  It is usually a good error term because it 
represents random variation among the experimental units.  

Blocks  \  Treatments A1 A2 A3 
Block 1 a1b1 a2b1 a3b1 
Block 2 a1b2 a2b2 a3b2 
Block 3 a1b3 a2b3 a3b3 

 

This looks like a factorial.   

The analysis is the same as the factorial, we get marginal sums or means and proceed to 
calculate the SS for blocks and treatments and “interaction” as before.  

However, there is one big difference.  If this was a factorial we would have Treatment A, 
Treatment B and the A*B interaction.  

What would you use as an error term?  We would not have one.  A factorial ANOVA must 
have an error term for testing treatments and interaction. 

However, since the “interaction” in a block design is assumed to be random variation among 
experimental units, it serves as an error term.  

So the model works for Block designs.  

ij i j ijY          

The “interaction” term is a useful and respectable error term.  
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We do however, in this case, have one additional assumption.  

Assume that there is “no interaction between the treatments and blocks”.  By interaction here we 
mean that the treatment patterns are the same in each block. We do not have a treatment 
behaving one way in one block, and behaving differently in another block.  

So the term represents random variation in experimental units and not some interaction in the 
same sense as “interaction” in a factorial design.  

So what about those EMS?  

For the CRD we had two cases 

Source d.f. EMS Random EMS Fixed 

Treatment t–1 2 2n    
2

2

1
in t
    

Error t(n–1) 2
  2

  

Total tn–1   
 

For the Block design we have two cases, one with just blocks and treatments, and one with 
replicate observations within the cells.  

Source d.f. EMS (no reps) EMS (with Reps)  

Treatment t–1 2 2b    2 2 2n nb       

Block b–1 2 2t    2 2 2n nt       

Exptl Error (b–1)(t–1) 2
  2 2n     

Rep Error tb(n–1)  2
   

Total tbn–1   
 

What is the nature of the replicates within the block 
by treatment cells?  

Suppose the experimental unit is a plot in a field.  
We are evaluating plant height.  
The treatment to be compared is 6 varieties of 

soy beans.  
The experiment is done in 3 fields (blocks).  
The error term is the field by variety 

combinations.  
This experiment is unreplicated within blocks.   

Additional replication is usually done in one of two 
ways.  
If we have only one plot (experimental unit) for 

each treatment in each field, we could 
sample several times within each plot, 
sampling plant height at several places in 
the plot.  

Our “sampling unit” is a smaller unit than the 
experimental unit (a plot) so we have sampling error.  

Replicated within blocks as multiple samples in an experimental unit.  Error is sampling error.  
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Another type of error comes from having several plots with a given soybean variety in each plot.  
Here each variety of soybean has several 
experimental units in each field. 

In this case the additional replication represents a 
second experimental error, one for block by 
treatment combinations and one for replicate 
plots within a block.  

In this case we have replicated experimental units 
in each block.  

Factorial EMS 

I haven't mentioned factorials EMS.  

Developing EMS can be pretty simple.  Start with the lowest unit, and move up the source table 
adding additional variance components for each new term.  

Source EMS with Reps 
Treatment 2 2 2n nb       

Block 2 2 2n nt       

Exptl Error 2 2n     

Rep Error 2
   

 

Interaction components occur on their own line, and on the source line for each higher effect 
contained in the interaction.  

Each main effect gets its own source.  

Now consider whether the effects are fixed or random.  Modify fixed effects to show SSEffects instead 
of variance components.  

Source EMS with Reps 
Treatment 2

2 2

1
in nb t 
      

Block 2 2 2n nt       

Exptl Error 2 2n    

Rep Error 2
  

 

If the model is an RBD we're done, because the interaction is always a random variable. 

For factorials that are random models and mixed models were done.  

Consider what the F test should be for the treatment.  Surprise, SAS always uses the residual error 
term! 

But for factorials there is one last detail.  It is perfectly possible in factorial designs that both 
effects are fixed, and if both effects are fixed the interaction is also fixed!  
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Source EMS with Reps 

Treatment A  
2

2

1
Ainb

a
    

Treatment B  
2

2

1
Bina

b
    

Interaction A*B 
 

  

2

2

1 1
A B ijn

a b

 
   

  

Error 2
  

 

And a FIXED effect occurs only on its own line, no other!! The fixed interaction disappears from 
the main effects!!!  

Now what is the error term for testing treatments and interaction?  Maybe SAS is right?  Or maybe 
SAS just doesn't know what is fixed and what is random.  

Testing ANOVAs in SAS 

So tell SAS what is random and what is fixed.  

Look for the following additions to SAS program.  

How do we tell SAS which terms to test with what error term? 

How do we get SAS to output EMS?  

How do we get SAS to automagically test the right treatment terms with the right error terms?  

Summary 

Randomized Block Designs modify the model by factoring a source of variation out of the error 
term in order to reduce the error variance and increase power.  If the basis for blocking is 
good, this will be effective.  If the basis for blocking is not good, we lose a few degrees of 
freedom from the error term and may actually lose power.  

The block by treatment combinations (interaction?) provide a measure of variation in the 
experimental units and provide an adequate error term.  

We have an additional assumption that this error term represents ONLY experimental error, and 
not some real interaction between the treatments and blocks.  

Expected mean squares for the RBD indicate that the experimental error term is the correct error 
term, whether there is a sampling unit or not.  

Factorial designs, where effects are random or mixed are similar to RBD EMS.  THE 
TREATMENT INTERACTION IS ACTUALLY USED AS AN ERROR TERM! 

When the treatments are fixed, the main effects do not contain the interaction term, and the 
residual error term is the appropriate error term.  
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Sample size in ANOVA 

Some textbooks use a slightly different expression for the equation, but it is the same as the 

equation discussed previously.  One minor change is the expression 
2

2
2 2( )

S
n t t

d
   .  An 

alternative to the use of d  is the expressing of the difference as a percentage of the mean.  For 
example, if we wanted to test for a difference that was 10% of the mean we could use the 

expression 
 

2
2

2 2( )
0.1

S
n t t

Y
   .  This expression can further be altered to express the 

difference in terms of the coefficient of variation SCV
Y

 .  Calculating the sample sized 

needed to detect a 10% change in the mean then becomes 2 2
2( ) (10 )n t t CV    .   

In analysis of variance we may also want to be able to detect a certain difference between two 
means (1 and 2) out of the treatment means we are studying, so our difference will be 1 –
 2.  A prior analysis, or a pilot study, may provide us with an estimate of the variance (MSE 
in ANOVA). From here we can use a formula pretty much the same as for the t-test discussed 
earlier.  There is one other little detail, however.  

We are basically testing 2 2
0 1 2H :     , from the 2 sample t-test. Recall from our linear 

combinations we have a variance for this linear combination that is the sum of the individual 

variances of the mean. Therefore, the variance will be. 
2 2

1 2

1 2

S S

n n
 .  Since we are usually 

pooling variances (ANOVA) then the formula simplifies to 
1 2

1 1
( )MSE
n n
  

.  Furthermore, since we usually attempt to have balanced experiments (equal sample size in each 
group) for analysis of variance the formula further simplifies to an expression similar to one 

seen previously, except for the addition of “2”, 2MSE
n .  The additional “2” occurs when we 

are testing for difference in two means ( 0 1 2H :   ) as opposed to testing a mean against an 

hypothesized value ( 0 0H :   ).   

Note one very important thing here.  In this formula “n” represents each group or population being 
studied, that is, each “treatment level” in an analysis of variance!  So for ANOVA or two-
sample t-test with equal variance and equal n, the expression for sample size is 

2
2

2

2( ) MSEt t
n

d

 
 .  Note that this “n” is for each treatment.  In a two sample t-test, each 

population would have a sample size of “n”, so the total number of observations would be 2n.  

In ANOVA we have “t” treatments; each would have a sample size of “n”, so the total number of 
observations would be tn. How often are we likely to have situations with equal variance and 
equal n?  Is this realistic?  Actually, yes it is.   

First, ANOVA traditionally required equal variances, though more modern analytical techniques 
can address the lack of homogeneity.  If necessary, equal variances may be achieved by a 
transformation or some other fix.  If variance is nonhomogeneous you could use the larger 
estimates and get a conservative estimate of “n”. 
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Second, the most common application for sample size calculation is in planning NEW studies, and 
of course in planning new studies you usually do not PLAN on unbalanced designs and non 
homogeneous variance.  

So these situations are realistic.  

Summary 

Finally we saw that this formula is applicable to two-sample t-tests and ANOVA, with some 
modifications in the estimate of the variance.  These modifications are the same ones needed 
for the 2-sample t-test as dictated by our study of linear combinations.  However, the 
calculations are simplified by the common ANOVA assumption of equal variance and the 
prevalence of balanced experiments.  

Review of Analysis of Variance procedures.   

1) H0: 1 = 2 = 3 = 4 = . . . = t  =    

2) H1: some i is different 

3a) Assume that the observations are normally distributed about each mean, or that the 
residuals (i.e. deviations) are normally distributed.   

b) Assume that the observations are independent  

c) Assume that the variances are homogeneous 

4) Set the level of type I error.  Usually  = 0.05  

5) Determine the critical value.  For a balanced CRD with a single factor treatment the test is an 
F test with t–1 and t(n–1) degrees of freedom (F=0.05, t–1, t(n–1) d.f.).    

6) Obtain data and evaluate.   

 The treatment sum of squares, as developed by Fisher, are converted to a “variance” and 
tested with an F test against the pooled error variance.  In practice, the sum of squares are 
usually calculated and presented with the degrees of freedom in a table called an ANOVA 
table.  For a balanced design (all ni equal) the calculations are,  

The uncorrected SS for treatments is 

2 2

1 1 1

1

( )
( )

t n n
Y Yij ij

ti j j
USS n

Treatments n ni

  
   


.  

The uncorrected SS for the total is 2
Total ij

i j

SS Y    

The correction factor for both terms is 

2( )t n
Yij

i j
CF

tn



  

Our ANOVA analyses will be done with PROC MIXED and PROC GLM.  There is a PROC 
ANOVA, but it is a subset of PROC GLM.   

LSMeans calculation 

The calculations of LSMeans are different.  For a balanced design, the results will be the same.  
However, for unbalanced designs the results will often differ.  
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The MEANS statement in SAS calculates a simple mean of all available observations in the 
treatment cells.  

The LSMeans statement will calculate the mean of the treatment cell means.  

Example: 

The MEAN of 4 treatments, where the observations are 3,4,8 for a1, 3,5,6,7,9 for a2, 7,8,6,7 for 
a3 and 3,5,7 for a4 is 5.8667. 

The individual cells means are 5, 6, 7 and 5 for a1, a2, a3 and a4 respectively.  The mean of 
these 4 values is 5.75.  This would be the LSMean.  

Raw means 

Treatments a1 a2 a3 Means 

b1 
5 6 9 

6.5 7 8  
 4  

b2 
7 5 5 

6.6 
9  7 

Means 7 5.75 7  
LSMeans means 

Treatments a1 a2 a3 Means 

b1 6 6 9 7 

b2 8 5 6 6.33 

Means 7 5.5 7.5  

Confidence Intervals on Treatments 

Like all confidence intervals on normally distributed estimates, this will employ a t-value and will 
be of the form 

2
Mean  a Yt S  

The treatment mean can be obtained from a means (or LSMeans) statement, but the standard 
deviation provided is not the correct standard error for the interval.  

The standard error in a simple CRD with fixed effects is the square root of MSE/n, where n is the 
number of observations used in calculating the mean.   

The calculation requires other considerations when random components are involved.  For 
example, in PROC MIXED the use of the Satterthwaite and Kenward-Roger 
approximations, the use of various estimation methods (the default is REML) and 
specifications of covariance structure are all things that can affect degrees of freedom.   

The use of MSE in the numerator is the default in PROC GLM, and if a different error is 
desired it must be specified by the user.  PROC MIXED is capable of detecting and using 
and error other than the MSE where appropriate.   

If there are several error terms (e.g. experimental error and sampling error) use the one that is 
appropriate for testing the treatments.  When an error term other than the residual is 
appropriate for testing the treatments, the degrees of freedom for the tabular t value are the 
d.f. from the error term used for testing.  This variance term would also be used to 
calculate the standard error for treatment means.   
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Simple Linear Regression  

Simple regression applications are used to fit a model describing a linear relationship between two 
variables.  The aspects of least squares regression and correlation were developed by Sir 
Francis Galton in the late 1800’s.   

The application can be used to test for a statistically significant correlation between the variables.  
Finding a relationship does not prove a “cause and effect” relationship, but the model can be 
used to quantify a relationship where one is known to exist.  The model provides a measure of 
the rate of change of one variable relative to another variable..   

There is a potential change in the value of variable Y as the value of variable X changes.  

Variable values will always be paired, one termed an 
independent variable (often referred to as the X 
variable) and a dependent variable (termed a Y 
variable).  For each value of X there is assumed to 
be a normally distributed population of values for 
the variable Y.  

The linear model which describes the relationship 
between two variables is given as  

0 1i i iY X        

The “Y” variable is called the dependent variable or response variable (vertical axis).  

. 0 1y x iX       is the population equation for a straight line.  No error is needed in this 

equation because it describes the line itself.   The term .y x  is estimated with at each 

value of Xi with Ŷ .    

y.x = the true population mean of Y at each value of X  

The “X” variable is called the independent variable or predictor variable (horizontal 
axis).   

0 = the true value of the intercept (the value of Y when X = 0)  

1 = the true value of the slope, the amount of change in Y for each unit change in X (i.e. 
if X changes by 1 unit, Y changes by 1 units).   

The two population parameters to abe estimated, 0 and 1 are also referred to as the 
regression coefficients.   

 

 

All variability in the model is assumed to be due to Yi, so variance is measured vertically  

The variability is assumed to be normally distributed at each value of Xi   

The Xi variable is assumed to have no variance since all variability is in Yi (this is a new 

assumption)   

The values 0 and 1 (b0 and b1 for a sample) are called the regressions coefficients.   

The 0 value is the value of Y at the point where the line crosses the Y axis.  This value is 
called the intercept.   If this value is zero the line crosses at the origin of the X and Y 

Y

X
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axes, and the linear equation reduces from “Yi=b0+ b1Xi” to “Yi=b1Xi” and is said to 
have “no intercept”, even though the regression line does cross the Y axis.   The units 
on b0 are the same units as for Yi.   

The 1 value is called the slope.  It determines the incline or angle of the regression line.  If 
the slope is 0, the line is horizontal.  At this point the linear model reduced to “Yi=b0”, 
and the regression is said to have “no slope”.  The slope gives the change in Y per unit 
of X.  The units on the slope are then “Y units per X unit”.        

 

The population equation for the line describes a perfect line with no variation.  In practice there 
is always variation about the line.  We include 
an additional term to represent this variation.  

0 1      i i iY X        for a population  

0 1      i i iY b b X e      for a sample 

When we put this term in the model, we are 
describing individual points as their position 
on the line plus or minus some deviation  

The Sum of Squares of deviations from the line 
will form the basis of a variance for the 
regression line  

When we leave the ei off the sample model we are describing a point on the regression line, 
predicted from the sample estimates.  To indicate this we put a “hat” on the Yi value, 

0 1
ˆ     i iY b b X  .   

Characteristics of a Regression Line  

The line will pass through the point ,  Y X  (also the point b0, 0)  

The sum of squared deviations (measured vertically) of the points from the regression line 
will be a minimum.  

Values on the line for any value of Xi can be described by the equation 0 1
ˆ     i iY b b X   

Common objectives in Regression : there are a number of possible objectives  

Determine if there is a relationship between Yi and Xi .   

This would be determined by some hypothesis test.   

The strength of the relationship is, to some extent, reflected in the correlation or R2 value.   

Determine the value of the rate of change of Yi relative to Xi .   

This is measured by the slope of the regression line.   

This objective would usually be accompanied by a test of the slope against 0 (or some 
other value) and/or a confidence interval on the slope.   

Establish and employ a predictive equation for Yi from Xi .   

Y

X
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This objective would usually be preceded by a Objective 1 above to show that a 
relationship exists.   

The predicted values would usually be given with their confidence interval, or the 
regression with its confidence band.   

Assumptions in Regression Analysis  

Independence  

The best guarantee of this assumption is random sampling.  This is a difficult assumption 
to check.  

This assumption is made for all tests we will see in this course.   

Normality of the observations at each value of Xi (or the pooled deviations from the 
regression line)  

 This is relatively easy to test if the appropriate values 
are tested (e.g. residuals in ANOVA or Regression, 
not the raw Yi values).  This can be tested with the 
Shapiro-Wilks W statistic in PROC UNIVARIATE.   

 This assumption is made for all tests we have seen this 
semester except the Chi square tests of Goodness of 
Fit and Independence  

Homogeneity of error (homogeneous variances or homoscedasticity)  

 This is easy to check for and to test in analysis of variance (S2 on mean or tests like 
Bartalett’s in ANOVA).  In Regression the simplest way to check is by examining the 
the residual plot.   

 This assumption is made for ANOVA (for pooled variance) and Regression.  Recall that 
in 2 sample t-tests the equality of the variances need not be assumed, it can be readily 
tested.   

Xi measured without error:  This must be assumed in ordinary least squares regressions, 

since all error is measured in a vertical direction and occurs in Yi .    

Assumptions – general assumptions 

The Y variable is normally distributed at each value of X 

The variance is homogeneous (across X). 

Observations are independent of each other and ei independent of the rest of the model.  

Special assumption for regression.  

Assume that all of the variation is attributable to the dependent variable (Y), and that the 
variable X is measured without error.  

Note that the deviations are measured vertically, not horizontally or perpendicular to the 
line.  

X

Y
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Fitting the line  

Fitting the line starts with a corrected SSDeviation, this is the SSDeviation of the 
observations from a horizontal line through the mean.  

The line will pass through the point X,Y.  
The fitted line is pivoted on this point 
until it has a minimum SSDeviations.  

How do we know the SSDeviations are a 
minimum?  Actually, we solve the equation 
for ei, and use calculus to determine the 
solution that has a minimum of the sum of 
squared deviations.  

0 1      i i iY b b X e       

0 1
ˆ    (   )    i i i i ie Y b b X Y Y        

 2
2 2

0 1
1 1 1

ˆ  [   (   )]     
n n n

i i i i i
i i i

e Y b b X Y Y
  

           

The line has some desirable properties 

E(b0) = 0   

E(b1) = 1   

E( XY ) = Y.X  

Therefore, the parameter estimates and predicted values are unbiased estimates. 

Derivation of the formulas 

You do not need to learn this derivation for this class!  However you should be aware of the 
process and its objectives.   

Any observation from a sample can be written as 0 1     i i iY b b X e   .   

where;  ei = a deviation of the observed point from the regression line  

The idea of regression is to minimize the deviation of the observations from the regression 
line, this is called a Least Squares Fit.  The simple sum of the deviations is zero,  

  0ie  , so minimizing will require a square or an absolute value to remove the sign.   

The sum of the squared deviations is,  

 2
2 ˆ  i i ie Y Y     =  2

0 1 i iY b b X   

  The objective is to select b0 and b1 such that 2
ie  is a minimum, by using some 

techniques from calculus.   We have previously defined the uncorrected sum of 
squares and corrected sum of squares of a variable Yi.   

Y

X
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The corrected sum of squares of Y  

The uncorrected SS is 2
iY    

The correction factor is 
 2

iY
n

     

The corrected SS is    2
2 2 i

YY i i

Y
CSS S Y Y Y n          

We will call this corrected sum of squares SYY and the correction factor CYY   

The corrected sum of squares of X  

We could define the exact same series of calculations for Xi, and call it SXX   

The corrected cross products of Y and X  

We need a cross product for regression, and a corrected cross product.  The cross product 
is XiYi.   

The uncorrected sum of cross products is i iY X      

The correction factor for the cross products is   i i
XY

Y X
C n

     

The corrected cross product is      i i
XY i i i i

Y X
CCP S Y Y X X Y X

n

 
          

The formulas for calculating the slope and intercept can be derived as follows  

Take the partial derivative with respect to each of the parameter estimates, b0 and b1.   

For b0 :  

2

1
0 1

10

  2 (     )(-1)
( )

n

i n
i

i i
i

e
Y b b X

b





  




 , which is set equal to 0 and solved for b0.    

0 1    0i iY nb b X      (this is the first “normal equation”)   

Likewise, for b1 we obtain the partial derivative, set it equal to 0 and solved for b1.   

    

2

1
0 1

11

  2 (     )(- )
( )

n

i n
i

i i i
i

e
Y b b X X

b





  




    

  
2 2

0 1 0 1(     )     )i i i i i i i iY X b X b X Y X b X b X           (second “normal equation”)  

The normal equations can be written as,   

0 1

2
0 1

       

  

i i

i i i i

b n b X Y

b X b X Y X

   

    
 

At this point we have two equations and two unknowns so we can solve for the 
unknown regression coefficient values b0 and b1.    
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For b0 the solution is: 0 1  i inb Y b X     and 0 1 1    i i
i i

Y Xb b Y b Xn n
     .   

Note that estimating 0 requires a prior estimate of b1 and the means of the variables X 
and Y.   

For b1, given that, 0 1  i iY Xb bn n
    and 2

0 1  i i i iY X b X b X      then  

 2
2 2

1 1 1 1 =         ii i i i
i i i i i

XY X Y XY X b X b X b b Xn n n n
             

 
   

   2 2
2 2

1 1 1 =    =  i ii i
i i i i

X XY XY X b X b b Xn n n
         
 

    

 1 2
2

 -
= 

 

i i
i i YX

XXi
i

Y XY X Snb
SX

X n

 


 
   so b1 is the corrected cross products over the corrected 

sum of squares of X  

The intermediate statistics needed to solve all elements of a SLR are 
2 2,  ,  ,  ,   and i i i i i iY X Y X Y X n     .  We have not seen 2

iY  used in the calculations yet, 

but we will need it later to calculate variance.    

Review 

We want to fit the best possible line through some observed data points.  We define this as the line 
that minimizes the vertically measured distances from the observed values to the fitted line.  

The line that achieves this is defined by the equations 

0 1 1    i i
i i

Y Xb b Y b Xn n
        

 1 2
2

 -
= 

 

i i
i i YX

XXi
i

Y XY X Snb
SX

X n

 


 
    

These calculations provide us with two parameter estimates that we can then use to get the 

equation for the fitted line. 0 1
ˆ     i iY b b X  .    

Testing hypotheses about regressions  

The total variation about a regression is exactly the same calculation as the total for Analysis of 
Variance. SSTotal = SSDeviations from the mean = Uncorrected SSTotal – Correction factor  

The simple regression analysis will produce two sources of variation.  

SSRegression – the variation explained by the regression 

SSError – the remaining, unexplained variation about the regression line.  

These sources of variation are expressed in an ANOVA source table.  
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Source  d.f.  
   Regression  1 d.f. used to fit slope 
   Error  n–2 error d.f.  
   Total   n–1 d.f. lost in adjusting for (“correcting for”) the mean 
 

Note that one degree of freedom is lost from the total for the “correction for the mean”, which 
actually fits the intercept.   The single regression d.f. is for fitting the slope.  

The correction fits a flat line through the mean 

Y

X  

The “regression” actually fits the slope. 

Y

X  

The difference between these two models is that one has no slope, or a slope equal to zero ( 1 0b  ) 

and the other has a slope fitted.  Testing for a difference between these two cases is the 
common hypothesis test of interest in regression and it is expressed as 0 1H : 0  .    

The results of a regression are expressed in an ANOVA table.  The regression is tested with an F 
test, formed by dividing the MSRegression by the MSError.   

 

This is a one tailed F test, as it was with ANOVA, and it has 1 and n–1 d.f.   It tests the null 
hypothesis 0 1H : 0   versus the alternative 1 1H : 0  .  

The R2 statistic  

This is a popular statistic for interpretation.  The concept is that we want to know what 
proportion of the corrected total sum of squares is explained by the regression line.   

 
Source  d.f. SS 
   Regression  1 SSReg 
   Error  n–2 SSError 
   Total   n–1 SSTotal
 

In the regression the process of fitting the regression the SSTotal is divided into two parts, the 
sum of squares “explained” by the regression (SSRegression) and the remaining 

Source df SS MS F
Regression 1 SSRegression MSRegression MSRegression/MSError

Error n – 2 SSError MSError  
Total n – 1 SSTotal  
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unexplained variation (SSError).  Since these sum to the SStotal, we can calculate what 
fraction of the total was fitted or explained the regression.  This is often expressed as a 
percentage of the total sum of squares explained by the model, and is given by R2 = 
SSRegression / SSTotal.   

This is often multiplied by 100% and expressed as a percent.  

We might state that the regression explains 75% of the total variation.  

This is a very popular statistic, but it can be very misleading.  

For some studies an R2 value of 25% or 35% can be pretty good.  For example, if you are 
trying to relate the abundance of an organism to environmental variables.  On the other 
hand, if you are doing mophometric relationships, like relating a crabs width to its 
length, an R2 value of less than 90% is pretty bad.   

A note on regression models applied to transformed variables.   

Studies of mophometric relationships, including relationships of lengths to weights, should 
be done with logarithmic values of both X and Y.  The log(Y) on log(X) model, called a 
power model, is a very flexible model used for many purposes.   

Many other models involving logs, powers, inverses are possible.  These will fit curves of 
one shape or another.  When using transformed variables in regression, all tests and 
confidence intervals are placed on the transformed values.  Otherwise, they are used 
like any other simple linear regression.  

Numerical Example : Some freshwater-fish ectoparasites accumulate on the fish as it grows.  
Once the parasite is on the fish, it does not leave.  The parasite completes it’s live cycle after 
the fish is consumed by a bird and finds it way again into the water.  Since the parasite attaches 
and does not leave, older fish should accumulate more parasites.  We want to test this 
hypothesis.   

Raw data with squares and crossproducts   

 

Observation Age Parasites Age2 Parasite2 Age*Parasite 

1 1 3 1 9 3 
2 2 7 4 49 14 
3 3 8 9 64 24 
4 3 12 9 144 36 
5 3 10 9 100 30 
6 4 15 16 225 60 
7 4 14 16 196 56 
8 5 16 25 256 80 
9 6 17 36 289 102 

10 6 15 36 225 90 
11 6 16 36 256 96 
12 7 19 49 361 133 
13 7 21 49 441 147 
14 8 18 64 324 144 
15 9 17 81 289 153 
16 9 20 81 400 180 
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Summary data 

 

Intermediate Calculations  
   X = 83     Y = 228 
   X2 = 521     Y2 = 3628 
  Mean of Xi = X = 5.1875    Mean of Yi = Y = 14.25 
   XY = 1348    n = 16 
 

 Correction factors and Corrected values (Sums of squares and crossproducts) 
  CF for X  Cxx = 430.5625  Corrected SS X Sxx = 90.4375 
  CF for Y  Cyy = 3249   Corrected SS Y Syy = 379 
  CF for XY Cxy = 1182.75   Corrected CP XY Sxy = 165.25 
 

ANOVA Table (values needed):  SSTotal = 379 
     SSRegression = 165.252 / 90.4375 = 301.9495508 

     SSError = 379  –  301.9495508 = 77.05044921 
 

 

Model Parameter Estimates 

Slope = b
1
 = 

  

 
. .

1

2

.
1

n

i i
xyi

n
xx

i
i

Y Y X X
S

SX X





 







=165.25 / 90.4375 = 1.827228749  

 Intercept = b
0
 = Y-b1X = 14.25  –  1.827228749 *5.1875 = 4.771250864 

Regression Equation  Yi = b
0
 + b

1
 * X

i
  + e

i
  = Y

i
 = 4.771250864 + 1.827228749 * X

i
  + e

i
   

Regression Line   iY


 = b
0
 + b

1
 * X

i
   = Y

i
 = 4.771250864 + 1.827228749 * X

i
   

 

Standard error of b
1
 : 

 
1 2

.
1

b n
xx

i
i

MSE MSE
S

SX X


 


  so 
1

5.5036

90.4375bS   = 0.2467  

 

Confidence interval on b1  where  b
1
 = 1.827228749 and t

(0.05/2, 14df)
 = 2.145  

P(1.827228749 – 2.145*0.246688722 1  1.827228749 + 2.145*0.246688722) = 0.95 

P(1.29808144 
1
  2.356376058) = 0.95  

 

Testing b1 against a specified value:   e.g.   H0: 
1
 = 5 versus H1: 

1
  5  

Sum 83 228 521 3628 1348
Mean 5.1875 14.25 32.5625 226.75 84.25

n 16 16 16 16 16

Source df SS MS F 
Regression 1 301.9495508   301.9495508     54.8639723 
Error 14 77.05044921 5.503603515  
Total 15 379.                  Tabular F0.05; 1, 14 = 4.600 

    Tabular F0.01; 1, 14 = 8.862 
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 where b
1
 = 1.827228749, S

b1
  = 0.246688722 and t

(0.05/2, 14df)
 = 2.145  

 =  (1.827228749  –  5) /  0.246688722 =   – 12.86144 

Standard error of the regression line (i.e. iY


) :  
 

2
.1

ˆ| 2
.

1

X Xi
S MSE

nY X n
X Xi

i




 




 
 
 
 
 

   

Standard error of the individual points (i.e. Yi): This is a linear combination of iY


 and ei, so the 

variances are the sum of the variance of these two, where the variance of ei is MSE.  The 

standard error is then 
|

2
ˆ|

S
Y X

S MSE
Y X 

   = 

 
 

 
 

2 2
. .1 1

1
2 2

. .
1 1

X X X Xi i
MSE MSE MSE

n nn n
X X X Xi i

i i

 
    

  
 

   
   
   
   
   

 

 

Standard error of b
0
 is the same as the standard error of the regression line where X

i
 = 0 

Square Root of [5.503603515 (0.0625 + 26.91015625/90.4375)] = 1.407693696 

 

Confidence interval on b
0
, where b0 = 4.771250864 and t

(0.05/2, 14df)
 = 2.145 

P(4.771250864  –  2.145*1.407693696 0 4.771250864+2.145*1.407693696) = 0.95 

P(1.751747886 
0
 7.790753842) = 0.95  

 

Estimate the standard error of an individual observation for number of parasites for a ten-year-

old fish:  0 1 iY b b X


  =4.77125 + 1.82723*X=4.77125 + 1.82723*10 = 23.04354   

Square Root of [ 5.503603515*(1+0.0625+(10 – 5.1875)2/90.4375)] =  
Square Root of [ 5.503603515*(1+0.0625+(23.16015625)/90.4375)] = 2.693881509 

 

Confidence interval on 
Y|X=10

    

P(23.04353836 – 2.145*2.693881509   Y|X=10   23.04353836+2.145*2.693881509) = 0.95 

  P(17.26516252   
Y|X=10

   28.82191419) = 0.95  

 

Calculate the coefficient of Determination and correlation  

 R2 = 0.796700662  or  79.67006617 % 
 r = 0.892580899 

 

See SAS output 

Overview of results and findings from the SAS program  




