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Simple Linear Regression  

Simple regression applications are used to fit a model describing a linear relationship between two 
variables.  The aspects of least squares regression and correlation were developed by Sir 
Francis Galton in the late 1800’s.   

The application can be used to test for a statistically significant correlation between the variables.  
Finding a relationship does not prove a “cause and effect” relationship, but the model can be 
used to quantify a relationship where one is known to exist.  The model provides a measure of 
the rate of change of one variable relative to another variable..   

There is a potential change in the value of variable Y as the value of variable X changes.  

Variable values will always be paired, one termed an 
independent variable (often referred to as the X 
variable) and a dependent variable (termed a Y 
variable).  For each value of X there is assumed to 
be a normally distributed population of values for 
the variable Y.  

The linear model which describes the relationship 
between two variables is given as  

0 1i i iY X        

The “Y” variable is called the dependent variable or response variable (vertical axis).  

. 0 1y x iX       is the population equation for a straight line.  No error is needed in this 

equation because it describes the line itself.   The term .y x  is estimated with at each 

value of Xi with Ŷ .    

y.x = the true population mean of Y at each value of X  

The “X” variable is called the independent variable or predictor variable (horizontal 
axis).   

0 = the true value of the intercept (the value of Y when X = 0)  

1 = the true value of the slope, the amount of change in Y for each unit change in X (i.e. 
if X changes by 1 unit, Y changes by 1 units).   

The two population parameters to abe estimated, 0 and 1 are also referred to as the 
regression coefficients.   

 

 

All variability in the model is assumed to be due to Yi, so variance is measured vertically  

The variability is assumed to be normally distributed at each value of Xi   

The Xi variable is assumed to have no variance since all variability is in Yi (this is a new 

assumption)   

The values 0 and 1 (b0 and b1 for a sample) are called the regressions coefficients.   

The 0 value is the value of Y at the point where the line crosses the Y axis.  This value is 
called the intercept.   If this value is zero the line crosses at the origin of the X and Y 
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axes, and the linear equation reduces from “Yi=b0+ b1Xi” to “Yi=b1Xi” and is said to 
have “no intercept”, even though the regression line does cross the Y axis.   The units 
on b0 are the same units as for Yi.   

The 1 value is called the slope.  It determines the incline or angle of the regression line.  If 
the slope is 0, the line is horizontal.  At this point the linear model reduced to “Yi=b0”, 
and the regression is said to have “no slope”.  The slope gives the change in Y per unit 
of X.  The units on the slope are then “Y units per X unit”.        

 

The population equation for the line describes a perfect line with no variation.  In practice there 
is always variation about the line.  We include 
an additional term to represent this variation.  

0 1      i i iY X        for a population  

0 1      i i iY b b X e      for a sample 

When we put this term in the model, we are 
describing individual points as their position 
on the line plus or minus some deviation  

The Sum of Squares of deviations from the line 
will form the basis of a variance for the 
regression line  

When we leave the ei off the sample model we are describing a point on the regression line, 
predicted from the sample estimates.  To indicate this we put a “hat” on the Yi value, 

0 1
ˆ     i iY b b X  .   

Characteristics of a Regression Line  

The line will pass through the point ,  Y X  (also the point b0, 0)  

The sum of squared deviations (measured vertically) of the points from the regression line 
will be a minimum.  

Values on the line for any value of Xi can be described by the equation 0 1
ˆ     i iY b b X   

Common objectives in Regression : there are a number of possible objectives  

Determine if there is a relationship between Yi and Xi .   

This would be determined by some hypothesis test.   

The strength of the relationship is, to some extent, reflected in the correlation or R2 value.   

Determine the value of the rate of change of Yi relative to Xi .   

This is measured by the slope of the regression line.   

This objective would usually be accompanied by a test of the slope against 0 (or some 
other value) and/or a confidence interval on the slope.   

Establish and employ a predictive equation for Yi from Xi .   
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This objective would usually be preceded by a Objective 1 above to show that a 
relationship exists.   

The predicted values would usually be given with their confidence interval, or the 
regression with its confidence band.   

Assumptions in Regression Analysis  

Independence  

The best guarantee of this assumption is random sampling.  This is a difficult assumption 
to check.  

This assumption is made for all tests we will see in this course.   

Normality of the observations at each value of Xi (or the pooled deviations from the 
regression line)  

 This is relatively easy to test if the appropriate values 
are tested (e.g. residuals in ANOVA or Regression, 
not the raw Yi values).  This can be tested with the 
Shapiro-Wilks W statistic in PROC UNIVARIATE.   

 This assumption is made for all tests we have seen this 
semester except the Chi square tests of Goodness of 
Fit and Independence  

Homogeneity of error (homogeneous variances or homoscedasticity)  

 This is easy to check for and to test in analysis of variance (S2 on mean or tests like 
Bartalett’s in ANOVA).  In Regression the simplest way to check is by examining the 
the residual plot.   

 This assumption is made for ANOVA (for pooled variance) and Regression.  Recall that 
in 2 sample t-tests the equality of the variances need not be assumed, it can be readily 
tested.   

Xi measured without error:  This must be assumed in ordinary least squares regressions, 

since all error is measured in a vertical direction and occurs in Yi .    

Assumptions – general assumptions 

The Y variable is normally distributed at each value of X 

The variance is homogeneous (across X). 

Observations are independent of each other and ei independent of the rest of the model.  

Special assumption for regression.  

Assume that all of the variation is attributable to the dependent variable (Y), and that the 
variable X is measured without error.  

Note that the deviations are measured vertically, not horizontally or perpendicular to the 
line.  
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Fitting the line  

Fitting the line starts with a corrected SSDeviation, this is the SSDeviation of the 
observations from a horizontal line through the mean.  

The line will pass through the point X,Y.  
The fitted line is pivoted on this point 
until it has a minimum SSDeviations.  

How do we know the SSDeviations are a 
minimum?  Actually, we solve the equation 
for ei, and use calculus to determine the 
solution that has a minimum of the sum of 
squared deviations.  

0 1      i i iY b b X e       

0 1
ˆ    (   )    i i i i ie Y b b X Y Y        

 2
2 2

0 1
1 1 1

ˆ  [   (   )]     
n n n

i i i i i
i i i

e Y b b X Y Y
  

           

The line has some desirable properties 

E(b0) = 0   

E(b1) = 1   

E( XY ) = Y.X  

Therefore, the parameter estimates and predicted values are unbiased estimates. 

Derivation of the formulas 

You do not need to learn this derivation for this class!  However you should be aware of the 
process and its objectives.   

Any observation from a sample can be written as 0 1     i i iY b b X e   .   

where;  ei = a deviation of the observed point from the regression line  

The idea of regression is to minimize the deviation of the observations from the regression 
line, this is called a Least Squares Fit.  The simple sum of the deviations is zero,  

  0ie  , so minimizing will require a square or an absolute value to remove the sign.   

The sum of the squared deviations is,  

 2
2 ˆ  i i ie Y Y     =  2

0 1 i iY b b X   

  The objective is to select b0 and b1 such that 2
ie  is a minimum, by using some 

techniques from calculus.   We have previously defined the uncorrected sum of 
squares and corrected sum of squares of a variable Yi.   
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The corrected sum of squares of Y  

The uncorrected SS is 2
iY    

The correction factor is 
 2

iY
n

     

The corrected SS is    2
2 2 i

YY i i

Y
CSS S Y Y Y n          

We will call this corrected sum of squares SYY and the correction factor CYY   

The corrected sum of squares of X  

We could define the exact same series of calculations for Xi, and call it SXX   

The corrected cross products of Y and X  

We need a cross product for regression, and a corrected cross product.  The cross product 
is XiYi.   

The uncorrected sum of cross products is i iY X      

The correction factor for the cross products is   i i
XY

Y X
C n

     

The corrected cross product is      i i
XY i i i i

Y X
CCP S Y Y X X Y X

n

 
          

The formulas for calculating the slope and intercept can be derived as follows  

Take the partial derivative with respect to each of the parameter estimates, b0 and b1.   

For b0 :  

2

1
0 1

10

  2 (     )(-1)
( )

n

i n
i

i i
i

e
Y b b X

b





  




 , which is set equal to 0 and solved for b0.    

0 1    0i iY nb b X      (this is the first “normal equation”)   

Likewise, for b1 we obtain the partial derivative, set it equal to 0 and solved for b1.   

    

2

1
0 1

11

  2 (     )(- )
( )

n

i n
i

i i i
i

e
Y b b X X

b





  




    

  
2 2

0 1 0 1(     )     )i i i i i i i iY X b X b X Y X b X b X           (second “normal equation”)  

The normal equations can be written as,   

0 1

2
0 1

       

  

i i

i i i i

b n b X Y

b X b X Y X

   

    
 

At this point we have two equations and two unknowns so we can solve for the 
unknown regression coefficient values b0 and b1.    
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For b0 the solution is: 0 1  i inb Y b X     and 0 1 1    i i
i i

Y Xb b Y b Xn n
     .   

Note that estimating 0 requires a prior estimate of b1 and the means of the variables X 
and Y.   

For b1, given that, 0 1  i iY Xb bn n
    and 2

0 1  i i i iY X b X b X      then  

 2
2 2

1 1 1 1 =         ii i i i
i i i i i

XY X Y XY X b X b X b b Xn n n n
             

 
   

   2 2
2 2

1 1 1 =    =  i ii i
i i i i

X XY XY X b X b b Xn n n
         
 

    

 1 2
2

 -
= 

 

i i
i i YX

XXi
i

Y XY X Snb
SX

X n

 


 
   so b1 is the corrected cross products over the corrected 

sum of squares of X  

The intermediate statistics needed to solve all elements of a SLR are 
2 2,  ,  ,  ,   and i i i i i iY X Y X Y X n     .  We have not seen 2

iY  used in the calculations yet, 

but we will need it later to calculate variance.    

Review 

We want to fit the best possible line through some observed data points.  We define this as the line 
that minimizes the vertically measured distances from the observed values to the fitted line.  

The line that achieves this is defined by the equations 

0 1 1    i i
i i

Y Xb b Y b Xn n
        

 1 2
2

 -
= 

 

i i
i i YX

XXi
i

Y XY X Snb
SX

X n

 


 
    

These calculations provide us with two parameter estimates that we can then use to get the 

equation for the fitted line. 0 1
ˆ     i iY b b X  .    

Testing hypotheses about regressions  

The total variation about a regression is exactly the same calculation as the total for Analysis of 
Variance. SSTotal = SSDeviations from the mean = Uncorrected SSTotal – Correction factor  

The simple regression analysis will produce two sources of variation.  

SSRegression – the variation explained by the regression 

SSError – the remaining, unexplained variation about the regression line.  

These sources of variation are expressed in an ANOVA source table.  
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Source  d.f.  
   Regression  1 d.f. used to fit slope 
   Error  n–2 error d.f.  
   Total   n–1 d.f. lost in adjusting for (“correcting for”) the mean 
 

Note that one degree of freedom is lost from the total for the “correction for the mean”, which 
actually fits the intercept.   The single regression d.f. is for fitting the slope.  

The correction fits a flat line through the mean 

Y

X  

The “regression” actually fits the slope. 

Y

X  

The difference between these two models is that one has no slope, or a slope equal to zero ( 1 0b  ) 

and the other has a slope fitted.  Testing for a difference between these two cases is the 
common hypothesis test of interest in regression and it is expressed as 0 1H : 0  .    

The results of a regression are expressed in an ANOVA table.  The regression is tested with an F 
test, formed by dividing the MSRegression by the MSError.   

 

This is a one tailed F test, as it was with ANOVA, and it has 1 and n–1 d.f.   It tests the null 
hypothesis 0 1H : 0   versus the alternative 1 1H : 0  .  

The R2 statistic  

This is a popular statistic for interpretation.  The concept is that we want to know what 
proportion of the corrected total sum of squares is explained by the regression line.   

 
Source  d.f. SS 
   Regression  1 SSReg 
   Error  n–2 SSError 
   Total   n–1 SSTotal
 

In the regression the process of fitting the regression the SSTotal is divided into two parts, the 
sum of squares “explained” by the regression (SSRegression) and the remaining 

Source df SS MS F
Regression 1 SSRegression MSRegression MSRegression/MSError

Error n – 2 SSError MSError  
Total n – 1 SSTotal  




