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More on Contrasts and Orthogonality 

Under some conditions, contrast sum of squares (SS) may add up to less than the treatment SS 
or they may add up to MORE than the treatment SS.  The most satisfying condition is 
when they sum to equal the treatment SS.  This is not necessarily a problem, as long as the 
contrasts are testing the hypotheses that you are interested in testing. 

If we do only a few contrasts, fewer than the d.f. for the treatments, the contrast SS will 
probably add up to less than the treatment SS.  No problem.   

If we do MANY contrasts, more than the number of d.f. for treatments, the contrast SS will 
probably add up to more than the treatment SS.  You are data-dredging?  Consider a 
Scheffé adjustment.  

If you do a number of contrasts equal to the number of treatment d.f., then the contrast SS can 
add up to more or less than the treatment SS.  However, if the contrasts are orthogonal they 
will sum to exactly the treatment SS.  

Contrasts are orthogonal if all their pairwise cross products sum to zero.  

The cross products of a set of paired numbers is simply the product of the pairs.  For 
example, take the following contrasts.  Where the treatment levels are A1, A2, A3 and 
A4, write contrasts for A1 versus A2, A1 and A2 versus A3 and A4, and A3 versus 
A4.  

These contrasts are given below.  

Contrast a1 a2 a3 a4 Sum 
  a1 v a2 –1 1 0 0 0 
  a1&a2 v a3&a4 –1 –1 1 1 0 
  a3 v a4 0 0 –1 1 0 
Cross products      
  c1 & c2 1 –1 0 0 0 
  c1 & c3 0 0 0 0 0 
  c2 & c3 0 0 –1 1 0 

 
These contrasts are orthogonal.  How about the set below?  

Where the treatment levels are A1, A2, A3 and A4, write contrasts for A1 versus A2 and 
A3, A1 and A2 versus A3 and A4, and A3 versus A4.   

If any one set of cross products do not sum to zero, the contrasts are not orthogonal.  
Orthogonality is a nice property, but not necessary.  Write the contrasts that you want 
to test, orthogonal if possible.    

Remember the ANOVA source table with its d.f. and Expected mean squares?  

Well, a more “modern” approach involves estimating the variance components directly 
(PROC MIXED). 

Source d.f. EMS Random EMS Fixed 
Treatment t–1 2 2n    2

2

1
in t
    

Error t(n–1) 2
  2

  

Total tn–1   
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Since the components are estimated directly there is no “sum of squares” for each line in the 
table.  The model is fitted interatively (maximum likelihood).  

Traditional ANOVA table 

                        Sum of      Mean 
Source           DF    Squares    Square  F Value  Pr > F 
Model             4   838.5976  209.6494    15.38  0.0001 
Error            20   272.6680   13.6334 
Corrected Total  24  1111.2656  

 
Te results of the tests and contrasts are usually the same.  However, the mixed model analysis is 

capable of addressing issues tht PROC GLM cannot, so when differences exist in the analysis 
PROC MIXED is likely to give the better result.   

PROC MIXED  ANOVA table 
        Type 3 Tests of Fixed Effects 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
treatmnt        4    7.08      25.64    0.0003 
 
                      Contrasts 
                     Num     Den 
Label                 DF      DF    F Value    Pr > F 
3 low vrs 2 high       1    12.7      21.59    0.0005 
odd vrs even           1    5.55      11.66    0.0161 
1st vrs 2nd            1    7.21      19.87    0.0027 

Summary 

Understand the post-hoc tests.  The range tests and contrasts.  Be able to interpret these from SAS 
output.  

Understand the differences between the post-hoc tests (error rates).  Only one is correct for a 
particular objective.  

Understand that contrasts are best done as a priori tests, and there is less concern with inflated 
Type I error rates if these are a priori tests. What is the error rate for contrasts by the way? 
The ANOVA was summarized.  Note those aspects that I consider most important.  

Understand Orthogonality.  

Understand Expected mean squares.  These will become extremely important in discussing larger 
designs.  Fortunately SAS will give us the EMS (later), we need only understand them.  

The Factorial Treatment Arrangement 

Also known as “two-way” ANOVA, this analysis has two (or more) treatments.  For example, 
treatment A with two levels (a1 and a2) and treatment B with two levels (b1 and b2).  The 
treatments are cross-classified such that each level of one treatment occurs in combination 
with each level of the other treatment  (e.g. a1b1, a1b2, a2b1, a2b2).   

Each treatment may be fixed or random (independently).   

The combinations of treatments are still assigned at random to experimental units, so the design is 
still a CRD.  For example, the 4 combinations in the example given (a1b1, a1b2, a2b1, a2b2) 
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would be assigned at random to the available experimental units, preferably in equal numbers 
to achieve a balanced design.   

This treatment arrangement is called a “factorial”, and the dimensions are usually given as 2 by 2 
(above), 2 by 3, 3 by 3, etc.  A schematic of a 3 by 3 factorial is given below.  

Treatments A1 A2 A3 
B1 a1b1 a2b1 a3b1 
B2 a1b2 a2b2 a3b2 
B3 a1b3 a2b3 a3b3 

Interactions 

The principle treatments (A and B in the previous examples) are called main effects.  The main 
effect for treatment A will be calculated from the marginal means or sums of the A treatment, 
averaged across the B treatment.   Likewise, the main effect of treatment B will be calculated 
from the marginal means for treatment B average across the levels of A.   

Marginal sums or means are used to evaluate the main effects.   

Treatments A1 A2 A3 B Means 
B1 a1b1 a2b1 a3b1 b1 mean 
B2 a1b2 a2b2 a3b2 b2 mean 
B3 a1b3 a2b3 a3b3 b3 mean 

A Means a1 mean a2 mean a3 mean  
 

Calculations for the main effects (Uncorrected treatment SS) 
are the same as for the CRD.  There is however one new 
issue.  It is possible for the same main effects to arise 
from various different cell patterns. 

Plotting the means for the first case. 

Treatment a1 a2 a3 a4 Means
b1 2 5 10 3 5
b2 4 7 12 5 7
Means 3 6 11 4  

 

Plotting the means for the second case. 

Treatment a1 a2 a3 a4 Means
b1 2 3 12 3 5
b2 4 9 10 5 7
Means 3 6 11 4  

 

This lack of consistency in the cells is caused when the 
marginal means are not strictly additive.  When 
additivity exists if some treatment marginal mean (#1) is 
larger by 2 units than some other mean (#2), each cell will in treatment #1 be 2 units higher 
than the corresponding mean of the treatment #2.  This would represent additivity, or no 
interaction between the treatments.    

If, however, the increases and decreases are not consistent, with the marginal means, then there is 
an interaction, or a lack of additivity.   The marginal means (or sums) are used to calculate the 
main effects of the treatments.  The cell to cell variation is used to measure the interaction 
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(after adjusting for the main effects).   If we plot the treatment means, as done previously, and 
the lines do not appear parallel, then there is some interaction.  

However, the lines are never perfectly parallel.  Is the departure from additivity significant or not?   
To determine this, we test the interaction.  This is normally done in ANOVA for all factorial 
designs.  

Interpreting interactions 

Sometimes the main effects are very important relative to the interactions and may tell you 
most of what you need to know to interpret the results.  Sometimes interactions can be 
important.  Significant interactions indicate that the main effects are somehow inconsistent.  
You should determine how this inconsistency affects your eventual conclusions.  
Significant interactions should not be ignored.   

Factorial contrasts 

Factorial experiments, also called two-way ANOVAs, are usually done in SAS by entering two 
class variables and their interaction in the model.    

PROC GLM; CLASSES A B; 
MODEL Y = A B A*B; RUN; 
 

However, it is also possible to do factorials as contrasts, setting up the treatments as a one-way 
ANOVA.  For a simple 2 by 2 factorial, with treatments A and B, we have a total of 4 cells 
and 3 degrees of freedom.   The 4 combinations are of the treatments are a1b1, a2b1, a1b2 and 
a2b2.  We can test the A main effect with a contrast, likewise the B main effect.  To test the 
interaction, calculate the cross-product of the A and B contrasts.  

Treatment levels a1b1 a1b2 a2b1 a2b2 Sum 
A –1 –1 1 1 0 
B –1 1 –1 1 0 

A*B Interaction 1 –1 –1 1 0 
 

For larger designs the pattern is similar, for example, examine the 2 × 2 × 2 factorial below.  
Treatment A has two levels (a and A), B has two levels (b and B) and C has levels (c and C).  
All contrasts consist of plus ones or minus ones, so only the + or – is shown.  

Tmt abc Abc aBc ABc abC AbC aBC ABC Sum 
A main – + – + – + – + 0 
B main – – + + – – + + 0 
A * B + – – + + – – + 0 

C main – – – – + + + + 0 
A * C + – + – – + – + 0 
B * C + + – – – – + + 0 

A * B * C – + + – + – – + 0 
 

A larger factorial. with more than 2 levels in some treatment, would have more than 2 d.f. in some 
treatment.  This would require a 2 or 3 or more d.f. contrast.  These can be done in SAS but 
we will not discuss these this semester.  

Summary 

Factorials, or two-way ANOVA, was covered.  
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A factorial is a way of entering two or more treatments into an analysis. 

The description of a factorial usually includes a measure of size, a 2 by 2, 3 by 4, 6 by 3 by 4, 2 
by 2 by 2, etc.  

Interactions were discussed.  

Interactions test additivity of the main effects 

Interactions are a measure of inconsistency in the behavior or the cells relative to the main 
effects.  

Interactions are tested along with the main effects 

Interactions should not be ignored if significant.  

Factorial analyses can be done as two-way ANOVAs in SAS, or they can be done as contrasts.   
 

The Randomized Block Design 

This analysis is similar in many ways to a “two-way” ANOVA 

The CRD is defined by the linear model,
 ij i ijY      .  The simplest version of the CRD has 

one treatment and one error term.  The factorial treatment arrangement discussed previously 
occurred within a CRD, and it had several different treatments, 1 2 1 2ijk i j i j ijkY           .  

This model has two treatments and one error.  It could have many more treatments, and it 
would still be a factorial design.  Designs having a single treatment or multiple treatments can 
all occur within a CRD and are referred to as different treatment arrangements.  

There are other modifications of a CRD that could be done.  Instead of multiple treatments we 
may find it necessary to subdivide the error term.   

Why would we do this?  Perhaps there is some variation that is not of interest.  If we ignore it, 
that variation will go to the error term.  For example, suppose we had a large agricultural 
experiment, and had to do our experiment in 8 different fields, or due to space limitations 
in a greenhouse experiment we had to separate our experiment into 3 different greenhouses 
or 5 different incubators.  Now there is a source of variation that is due to different fields, 
or different greenhouses or incubators!   

If we do it as a CRD, we put our treatments in the model, but if there is some variation due to 
field, greenhouse or incubator it will go to the error term. This would inflate our error term an 
make it more difficult to detect a difference (we would lose power).  

How do we prevent this?  First, make sure each treatment occurs in each field, greenhouse or 
incubator (preferably balanced).  Then we would factor the new variation out of the error 
term by putting it in the model.  

ijk i j i j ijkY            

This is not a new treatment.  We will call it a BLOCK.  This looks like a factorial, but it is not 
because the blocks are not a source of variation that we are interested in discussing.  

Also, in a factorial the interaction term is likely to be something of interest.  In a block design 
the interaction is an error term, representing random variation of experimental units across 
treatments.  
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Another difference, treatments can be either fixed or random.  If both treatments are fixed, the 
interaction is fixed.  However, blocks are usually random, and the block interaction is 
always random.  

So why are we blocking?  

It is usually used to add replication to an experiment.  Additional replicates are added in 
another field, another greenhouse.  On the one hand, the larger experiment should add 
power.  On the other hand, if we do not take measures to keep the new variation out of the 
error term, we may lose power due to the larger error.  

So, how does this affect our analysis?   

We still have treatments with the test of treatments in the ANOVA (an F test).   

We can still do post-hoc tests on the treatments.  

There is only one new issue, the error term.  To examine this we will need to look at the 
expected mean squares (EMS) for the Randomized Block Design.  

RBD EMS 

We will examine two possible types of models.  

In the first model we have treatments and blocks and nothing else.  Each treatment occurs in each 
block ONCE.  The experiment is similar to a factorial in some regards, but not many.  

 

The model is 

ij i j ijY         

In this model the error term (ij) actually comes from the block by treatment interactions (ij).  
This is the only error available, but that is OK.  It is usually a good error term because it 
represents random variation among the experimental units.  

Blocks  \  Treatments A1 A2 A3 
Block 1 a1b1 a2b1 a3b1 
Block 2 a1b2 a2b2 a3b2 
Block 3 a1b3 a2b3 a3b3 

 

This looks like a factorial.   

The analysis is the same as the factorial, we get marginal sums or means and proceed to 
calculate the SS for blocks and treatments and “interaction” as before.  

However, there is one big difference.  If this was a factorial we would have Treatment A, 
Treatment B and the A*B interaction.  

What would you use as an error term?  We would not have one.  A factorial ANOVA must 
have an error term for testing treatments and interaction. 

However, since the “interaction” in a block design is assumed to be random variation among 
experimental units, it serves as an error term.  

So the model works for Block designs.  

ij i j ijY          

The “interaction” term is a useful and respectable error term.  




