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The concept 

We are familiar with variance. 
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We are familiar with the pooled variance 
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We are familiar with the variance of the means.  But we never get “multiple” estimates of the 
mean and calculate a variance from those.  The calculation we use to get the variance of the 

means comes from statistical theory, 
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 .  Could we actually get multiple estimates of 

the means and calculate a sum of squared deviations of the various means from an overall 
mean and get variance of the means from that?    

Yes, we could, and using the formula 
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 should give the same value.    

Suppose we have some values from a number of different samples, perhaps taken at different sites.  
The values would be Yij, where the sites are i=1, 2, ..., k, and the observations from within the 
sites are j = 1, 2, 3, ..., ni.  For each site we calculate a value of the mean.  We then take the 
various means (k different means) and calculate a variance among those.  This would also 
give the “variance of the means”.  

The LOGIC 

Remember, we want to test  

H0: 1 = 2 = 3 = ... = k  

We have a bunch of means and we want to know if they were drawn from the same population or 
different populations.  We also have a bunch of samples each with its own variance (S2). If we 
can assume homogeneous variance (all variances equal) then we could POOL the multiple 
estimates of variance.  So, to start with we will take the variances from each of the groups and 
pool them into one new & improved estimate of variance.  This will be the very best estimate 
of variance that we will get (if the assumption is met).  
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Now, think about the means.  If the NULL HYPOTHESIS IS TRUE, then we could calculate the 
variance of the means from the multiple 
means.  This would estimate 2

YS , the 

variance of the means.  We would take the 
deviations of each .iY  from the overall 

mean, ..Y , and get a variance from that.  
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If the null hypothesis is true, the means should be pretty close to the overall mean.  They won't be 
exactly equal to the overall mean because of random sampling variation in the individual 
observations.   
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However, if the null hypothesis is false, then some mean will be different!  At least one, maybe 
several.  
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So we take the Sum of squared deviations, divide by the degrees of freedom and we get an 

estimate of the variance of the means, 
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.  But this does not exactly estimate 

the variance, it estimates the variance of the means, that is the variance divided by the sample 

size!   The sample size is the number of observations in each mean. 
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In order to estimate the variance we must multiply this estimate by n, the sample size, 
2

2 2
Y

nS
nS S

n
  , giving a second estimate of the variance.  This is obviously easier if each 

sample size is the same (i. e. the experiment is balanced).  We will usually use the 
calculations for a balanced design, but the analysis can readily be done if the data is not 
balanced.  It's just a little more complicated.   

The Solution 

So what have we got?  

One variance estimate that is pooled across all of the samples because the variances are equal 
(an assumption, sometimes testable).  This is the best estimate of random error.   

And another variance that should be the same IF the null hypothesis is TRUE.   

The second mean (from the variances) may not be the same if the null hypothesis is false, 
depending on how great the departure from the null hypothesis.  Not only will the second 
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variance from the mean not be the same, IT WILL BE LARGER!  Why?  Because when we are 
testing means for equality we will not consider rejecting if the means are too similar, only 
if they are too different and large differences in means yield large deviations which 
produce an overly large variance.  So this will be a one tailed test.   

And how to we go about testing these two variances for equality?  Testing for equality of 
variances requires an F-test, of course.  

If 0 1 2 3H : ... k        is true, then 2 2
p YS nS    

If H1: some i is different, then 2 2
p YS nS    

For a one tailed F test we put the ONE WE EXPECT TO BE LARGER IN THE NUMERATOR.  
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And that is Analysis of Variance.  

We are actually testing means, but we are doing it by turning them into variances; one pooled 
variance from within the groups, called the “pooled within variance” and one variance 
from between groups or among groups called the “variance among groups” or “between 
group variance”.   If the variances are not significantly different as judged by the F test, 
then we cannot reject the null hypothesis.  It is possible, as usual, that we make a Type II 
error with some unknown probability ().  If the variances are judged to not be the same, 
then the null hypothesis is probably not true.  Of course we may have made a Type I error, 
with a known probability of    

Some of the calculations later, but this is the basic idea.  

R. A. Fisher  

Ronald Aylmer Fisher is sometimes called the father of modern 
statistics.  Some of his major contributions include the development of 
the basics of design of experiments and Analysis of Variance.   

Born in London 1890, he had very poor eyesight that prevented him 
from learning by electric light.  He had to learn by having things read 
out to him.  He developed the ability view problems geometrically and to figure mathematical 

equations in his head.   In 1909 he won a scholarship to Cambridge.   

He left an academic position teaching mathematics for a position at 
Rothamsted Agricultural Experiment Station.  In this environment 
he developed many applied analyses 
for testing experimental hypotheses 
(Analysis of Variance, circa 1918), 
and provided much of the 
foundation for modern statistics.  

We will see other analyses (in addition to ANOVA) developed by 
Fisher.   Some other contributions by Fisher include the first use of the 
term “null hypothesis”, development of the F distribution, of the Least 
Significant Difference, maximum likelihood estimation and contributed 
to the early use nonparametric statistics.   
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Terminology used in Analysis of Variance  

Treatment – different experimental populations that are contained in an experiment and undergo 
some application or manipulation by the experimenter 

Control or check – a “treatment” that receives no experimental manipulation  

Experimental Unit – the unit to which a treatment is applied 

Sampling Unit – the unit that is sampled or measured  

The linear model is given by ij i ijY     or ij i ijY          

where .( )i i     is estimated by . ..ˆ ( )i iY Y        

The calculation of treatment Sum of Squares for treatments is a sum of the squared treatment 

effects 
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The calculation of treatment Mean Square is a sum of squared effects divided by the degrees of 

freedom.  A variance? 
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A random treatment effect estimates a variance component.  In order for treatments to be random, 
they should be a random selection from a large (theoretically ∞) number of treatments.  
Inferences developed from random treatments are for all the possible treatment levels.  

Examples of random effects  

The term used for the error in an experiment are always random.  They represent random 
variation.  This variation comes from the experimental unit and sometimes the sampling 
unit. 

Compare production rice varieties, where rice varieties represent a random sample from the 
world's rice varieties.  

Estimate the alcohol content of beer, where the beers tested are randomly sampled from all the 
beers in the population of interest (world, national).  

Oxygen levels in bayous, where randomly selected bayous represent all bayous in the state.  

A treatment is FIXED if all possible levels, or all levels of interest, are included in the experiment.  
The treatment levels are selected by the investigator and are probably not chosen from a very 
large number of possible values.  

A fixed treatment estimates the sum of squared fixed effects for the treatments being investigated.  

This is NOT a variance, but the calculation is the same, 
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Examples of fixed effects  

 Experiment includes all of the 7 rice varieties commonly grown in Louisiana  

 Beers are limited to the 5 micro-breweries in Anchorage, Alaska.  
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There are some treatments that are common and typically fixed.   

For example, indicator variables that include all possible levels of a treatment.   

 Sex (male, female)   

 Class (Freshman, Sophomore, Junior, Senior) 

Ordinal treatments, where data are categorized as large, medium & small or as deep & 
shallow or as a high level & a low level.  

Before and After  

Treatments with a control group 

If the treatments are fixed, then inferences are limited to the treatments included in the experiment.  
Comparing the individual treatment levels is often of interest, since they are often specifically 
chosen by the investigator.  If the treatments are random inferences are made to the whole 
population that the sample was taken from.  Individual “treatment levels” are usually not of 
interest.  

Some treatments can be either fixed or random.  

Years – do they represent random variation or do we categorize as “wet & dry”  

Months – randomly selected, or do they represent seasons   

Sites or locations – random chosen or selected for certain characterisitics? 

Example 

A new insulin preparation is being compared to an older standard and a saline control.  Ten 
rabbits are administered the preparations and blood sugar is measured after 20 minutes.  

What are the treatments?  Experimental units?  Sampling units?   Are the treatments fixed or 
random?  

CRD – the Completely Randomized Design  

The analysis of variance we have seen is called the Completely Randomized Design (CRD) 
because the treatments are assigned to the experimental units completely at random.  The 
analysis is also called a “one-way analysis of variance”.  Later we will discuss the 
Randomized Block Design (RBD).  

Key aspects of the analysis.   

Everything is important, but there are some aspects that I consider more important.  These are 
discussed below.  

The 7 steps of hypothesis testing:   Understand particularly the hypothesis being tested and the 
assumptions we need to make to conduct a valid ANOVA.  

Understand the tests of the assumptions, particularly the HOV tests and evaluation of 
normality, particularly Shapiro-Wilks.  

Calculations:  We will primarily do the ANOVA using SAS.  However, it is important to 
understand that the calculations, as originally derived by Fisher, were based on the 
marginal totals or means, averaging or summing over all observations in the treatment.  
This will take on additional significance when we talk about two-way ANOVA.  
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The ANOVA table:  Understand the table usually used to express the results of an Analysis of 
Variance.  This same table will also be used for regression.  

Traditional ANOVA table  

                        Sum of      Mean 
Source           DF    Squares    Square  F Value  Pr > F 
Model             4   838.5976  209.6494    15.38  0.0001 
Error            20   272.6680   13.6334 
Corrected Total  24  1111.2656  
 

SEE SAS OUTPUT  

Expected Mean Square 

What do we estimate when we calculate a pooled variance estimate (MSE) or the sum of 
squared treatment (SSTreatments) effects divided by its d.f.?  

The MSE estimates 2, the random variation for individuals in the population.  

If the null hypothesis is true, the MS for Treatments also estimate the same random variation, 
2.  The F value should only reject the null hypothesis *100% of the time.  

But what if the null hypothesis is NOT true?  Then, the MSTreatments estimates 2, PLUS 
some additional component due to a treatment effect.  

For a random effect this additional component would be called 2
 .  This is a variance.  

For a FIXED effect the additional component is simple the sum of squared effects divided by 

the d.f., 
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 .  This is not a variance component.  

The ANOVA source table with its d.f. and Expected mean squares (for a balanced design).  

Note: 1 tailed test, n influences power 

Source d.f. EMS Random EMS Fixed 

Treatment t–1 2 2n     
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We could also express our null hypothesis in terms of EMS [ 2
0H : 0  ], particularly for the 

random effect since the variance component for treatments may be a value of interest.  

Since for a fixed effect the individual means are usually of interest, the null hypothesis is 
usually expressed in terms of the means ( 0 1 2 3H : ... t       ).   




