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A special case – the paired t-test 

One last case.  In some circumstances the observations are not separate and distinct in the two 
samples.  Sometimes they can be paired.  This can be good, adding power to the design.  

For example:  

We want to test toothpaste.  We may pair on the basis of twins, or siblings in assigning the 
toothpaste treatments.  

We want to compare deodorants or hand lotions.  We assign one arm or hand to one brand an 
the other to another brand.  

In may drug and pharmaceutical studies done on rats or rabbits the treatments are paired on 
litter mates.  

So, how does this pairing affect our analysis?  The analysis is done by subtracting one category 
of the pair from the other category of the pair.  In this way the pair values become 
difference values.  

As a result, what originally appears to be a “two-sample t-test” becomes a one-sample t-test of 
the differences between the two members of each pair.  

So, in many ways the paired t-test is easier.  

Example: We already did an example of this type of analysis.  Recall the Lucerne flowers whose 
seeds we compared for flowers at the top and bottom of the plant.  This was paired and we 
took differences.   The difference was “1” with a standard error of “0.5055”.   

SAS example 2c examined previously  

           Tests for Location: Mu0=0 
Test           -Statistic-    -----p Value------ 
Student's t    t  1.978141    Pr > |t|    0.0793 
Sign           M         2    Pr >= |M|   0.3438 
Signed Rank    S      19.5    Pr >= |S|   0.0469  

 
So the paired t-test is an alternative analysis for certain data structures.  It is better because it 

eliminates the “between pair” variation and compares the treatments “within pairs”.  This 
reduces variance.  

However, note that the degrees of freedom are also cut in half.  If the basis for pairing is not good, 
the variance is not reduced, but degrees of freedom are lost.  

Summary 

The SAS PROC TTEST provides all of the tests needed for two-sample t-tests.  It provides the test 
of variance we need to start with, and it provides two alternative calculations, one for equal 
variance and one for unequal variance.  We choose the appropriate case.  

We also saw that several previous calculations, such as confidence intervals and sample size, are 
also feasible for the two-sample t-test case.  

The paired t-test, where there is a good strong basis for pairing observations, can gain power by 
reducing between pair variation.  However, if the basis for pairing is not good, we lose 
degrees of freedom and power.    
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Calculating a needed sample size  

The Z-test and t-test use a similar formula. 0 0

2

Y Y
Z

n
n

 


 
 



 

Let’s suppose we know everything in the formula except n.  Do we really?  Maybe not, but we can 
get some pretty good estimates.   

Call the numerator ( 0Y  ) a difference, d .  It is some mean difference we want to be able to 

detect, so 0d Y     

The value 2 is a variance, the variance of the data that we will be sampling.  We need this 
variance, or an estimate, S2. 

So we alter the formula to read. 
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What other values do we know?  Do we know Z?  No, but we know what Z we need to obtain 
significance.  If we are doing a 2-tailed test, and we set  0.05, then Z will be 1.96.  

Any calculated value larger will be “more significant”, any value smaller will not be significant.  

So, if we want to detect significance at the 5% level, we can state that ... 

We will get a significant difference if 
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We square both sides and solve for n.  Then we will also SHOULD get a significant difference if 
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 .  Then, if we know the values of 2,  and d Z , we can solve the formula for n.  If 

we are going to use a Z distribution we should have a known value of the variance (2).  If the 
variance is calculated from the sample, use the t distribution.  This would give us the sample 
size needed to obtain “significance”, in accordance with whatever Z value is chosen.  

Generic Example 

Try an example where  

d  = 2  

  = 5, 2 = 25 

 Z = 1.96 

So what value of n would detect this difference with this variance and produce a value of Z 
equal to 1.96 (or greater)?  

2 2
2

2

Z
n

d

 
  = (1.962 * 52)/22 = 3.8416(25)/4 = 24.01 

since n  ≥  24.01, round up to 25.  
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Answer, n ≥ 25 would produce significant results.  Guaranteed?  Wouldn't this always produce 
significant results?  Theoretically, within the limits of statistical probability of error, yes, 
but only if the difference was really 2.  If the null hypothesis (no difference, 0) was 
really true and we took larger samples, then we would get a better estimate of 0, and may 
never show significance.  

Considering Type II Error 

The formula we have seen contains only Z2 or t2, depending on whether we have 2 or S2.   
However, a fuller version can contain consideration of the probability of Type II error (b).  

We can often use Z when working with very large samples.  

Remember that to work with TYPE II or  error we need to know the mean of the real distribution.  

However, in calculating sample size we have a difference, 0d Y   . So we can include 

consideration of type II error and power in calculating the sample size.  The consideration of 
 error would be done by adding another Z or t for the error rate.  Notice that below I switch 

to t distributions and use 
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Other examples 

We have done a number of tests, some yielding significant results and others not.  If a test yields 
significant results (showing a significant difference between the observed and hypothesized 
values), then we don't need to examine sample size because the sample was big enough.  
However, some utility may be made of this information if we FAIL to reject the null 
hypothesis.  

Note:  Some textbooks give only the formula I originally gave for Z, without the  error 

consideration.   What is the power if you use the formula omitting t from 
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If you set t equal to zero the power is 0.50 and there is a 50% chance of making a Type II 
error.   

An example with t values and  error included 

Recall the Rhesus monkey experiment.  We hypothesized no effect of a drug, and with a 
sample size of 10 were unable to reject the null hypothesis.  However, we did observe a 
difference of +0.8 change in blood pressure after administering the drug.  What if this 
change was real?  What if we made a Type II error?  How large a sample would we need to 
test for a difference of 0.8 if we also wanted 90% power?   

So we want to know how large a sample we would need to get significance at the =0.05 level 
if power was 0.90. In this case  = 0.10.  To do this calculation we need a two tailed  and 
a one tailed  (we know that the observed change is +0.8).  We will estimate the variance 
from the sample so we will use the t distribution.  However, since we don't know the 
sample size, we don't know the degrees of freedom!  Since we do not know the d.f. we will 
start off with some “reasonable” values for t and t.  Then after we solve the equation we 
will have an estimate of the d.f.   We can solve again with better values of t and t, and 
refine our estimate.  After our second calculation we have even better estimates of d.f., so 
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we get new values for t and t and redo the calculations, etc, etc, until the estimate 
stabilizes.  

So we will approximate to start with.  Given the information,  

  0.05, so the value of t will be approximately 2 

  = 0.10, so the value of t will be roughly 1.3  

0d Y    = 0.8 from our previous results,  

 S2 = 9.0667 from our previous results.  
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We do the calculations. 
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(2 1.3) 9.0667 (3.3) 9.0667
154.27

(0.8) 0.64
n


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And now we have an estimate of n and the degrees of freedom, n = 155 and d.f. =154.  We can 
refine our values for t2 and tb. 

for d.f. = 154, t2 = 1.97 approx. 

for d.f. = 154, tb = 1.287 approx. 

So we redo the calculations with improved estimates.  

2 2

2

(1.97 1.287) 9.0667 (3.257) 9.0667
150.28

(0.8) 0.64
n


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A little improvement!  If we saw much change in the estimate of n, we could recalculate as 
often as necessary.  Usually 3 or 4 recalculations are enough.  

Summary 

We developed a formula for calculating sample sizen that can be adapted for either t or Z 

distributions, 
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We learned that we need input values of , , S2 (or 2 for Z tests) and a value for the size of the 

difference to be detected ( d ).  

For the t-test, the first calculation was only approximate since we didn't know the degrees of 
freedom. However, after the initial calculation the estimate could be improved by the iterative 
recalculation of the estimate of n until it was stable.  
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Analysis of Variance (ANOVA) 

R. A. Fisher – resolved a problem that had existed for some time.  The hypothesis to be tested is 

0 1 2 3H : ... k         versus the alternative H1: 

some i  is different.  Conceptually, we have separate 

(and independent) samples, each giving a mean, and we 
want to know if they could have all come from the same 
population, or if is more likely that at least one came 
from a different population.   

One way to do this is a series of t-tests.  

If we want to test among 3 means we do 3 tests: 1 
versus 2, 1 versus 3, 2 versus 3 

For 4 means there are 6 tests.  1–2, 1–3, 1–4, 2–3, 2–4, and 3–4 

For 5 means, 10 tests, etc.  

This technique is unwieldy, and has other issues.  When we do the first test, there is an  
chance of error, and for each additional test another  chance of error.  So if you do 3 or 6 
or 10 tests, the chance of error on each and every test is   

Overall, for the experiment, the chance of error for all tests together is much higher than    

Bonferroni gave a formula that showed that the chance of error would be NO MORE than i. So 
if we do 3 tests, each with a 5% chance of error, the overall probability of error is no greater 
than 15%, 30 percent for 6 tests, 50% for 10 tests, etc.  

Of course this is an upper bound.  Other calculations are probably more realistic such as the 

calculation   1
1 1

k       used by Duncan or   21 1
k

      from the Student-

Newman-Keuls calculation (where k is the number of groups to be tested,  is the error rate 
for each test and  is the error rate for the collection of tests).  The table below gives some 
probabilities of error calculated by Bonferroni’s, Duncan’s and Student-Newman-Keuls’ 
formulas for tests done at  0.05.   

Number 
of means 

Pairwise 
tests (1–)

Bonferroni
(upper bound)

Duncan
[1–(1–)k–1]

Student-Newman-
Keuls [1–(1–)k/2]

2 1 0.95 0.05 0.0500 0.0500
3 3 0.86 0.15 0.0975 0.0741
4 6 0.74 0.30 0.1426 0.0975
5 10 0.6 0.50 0.1855 0.1204
6 15 0.46 0.75 0.2262 0.1426
7 21 0.34 1.05 0.2649 0.1643

10 45 0.1 2.25 0.3698 0.2262
50 1225 0 61.25 0.9190 0.7226

 
The bottom line: Splitting an experiment into a number of smaller tests is generally a poor idea.  

This applies at higher levels as well (i.e. splitting big ANOVAs into little ones).   The 
solution: We need ONE test that will give us an accurate test with an  value of the desired 
level.  
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The concept 

We are familiar with variance. 
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We are familiar with the pooled variance 
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We are familiar with the variance of the means.  But we never get “multiple” estimates of the 
mean and calculate a variance from those.  The calculation we use to get the variance of the 

means comes from statistical theory, 
2

2
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S
S

n
 .  Could we actually get multiple estimates of 

the means and calculate a sum of squared deviations of the various means from an overall 
mean and get variance of the means from that?    

Yes, we could, and using the formula 
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 should give the same value.    

Suppose we have some values from a number of different samples, perhaps taken at different sites.  
The values would be Yij, where the sites are i=1, 2, ..., k, and the observations from within the 
sites are j = 1, 2, 3, ..., ni.  For each site we calculate a value of the mean.  We then take the 
various means (k different means) and calculate a variance among those.  This would also 
give the “variance of the means”.  

The LOGIC 

Remember, we want to test  

H0: 1 = 2 = 3 = ... = k  

We have a bunch of means and we want to know if they were drawn from the same population or 
different populations.  We also have a bunch of samples each with its own variance (S2). If we 
can assume homogeneous variance (all variances equal) then we could POOL the multiple 
estimates of variance.  So, to start with we will take the variances from each of the groups and 
pool them into one new & improved estimate of variance.  This will be the very best estimate 
of variance that we will get (if the assumption is met).  
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1 2 3 4 5( 1) ( 1) ( 1) ( 1) ( 1)p
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Now, think about the means.  If the NULL HYPOTHESIS IS TRUE, then we could calculate the 
variance of the means from the multiple 
means.  This would estimate 2

YS , the 

variance of the means.  We would take the 
deviations of each .iY  from the overall 

mean, ..Y , and get a variance from that.  

 

Y

Group
A B C D E

Y

Means

Deviations
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If the null hypothesis is true, the means should be pretty close to the overall mean.  They won't be 
exactly equal to the overall mean because of random sampling variation in the individual 
observations.   

Y

Group
A B C D E

Y

 

However, if the null hypothesis is false, then some mean will be different!  At least one, maybe 
several.  

Y

Group
A B C D E

Y

 

So we take the Sum of squared deviations, divide by the degrees of freedom and we get an 

estimate of the variance of the means, 
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.  But this does not exactly estimate 

the variance, it estimates the variance of the means, that is the variance divided by the sample 

size!   The sample size is the number of observations in each mean. 
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In order to estimate the variance we must multiply this estimate by n, the sample size, 
2

2 2
Y

nS
nS S

n
  , giving a second estimate of the variance.  This is obviously easier if each 

sample size is the same (i. e. the experiment is balanced).  We will usually use the 
calculations for a balanced design, but the analysis can readily be done if the data is not 
balanced.  It's just a little more complicated.   

The Solution 

So what have we got?  

One variance estimate that is pooled across all of the samples because the variances are equal 
(an assumption, sometimes testable).  This is the best estimate of random error.   

And another variance that should be the same IF the null hypothesis is TRUE.   

The second mean (from the variances) may not be the same if the null hypothesis is false, 
depending on how great the departure from the null hypothesis.  Not only will the second 
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variance from the mean not be the same, IT WILL BE LARGER!  Why?  Because when we are 
testing means for equality we will not consider rejecting if the means are too similar, only 
if they are too different and large differences in means yield large deviations which 
produce an overly large variance.  So this will be a one tailed test.   

And how to we go about testing these two variances for equality?  Testing for equality of 
variances requires an F-test, of course.  

If 0 1 2 3H : ... k        is true, then 2 2
p YS nS    

If H1: some i is different, then 2 2
p YS nS    

For a one tailed F test we put the ONE WE EXPECT TO BE LARGER IN THE NUMERATOR.  

2

2
Y
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nS
F

S
     

And that is Analysis of Variance.  

We are actually testing means, but we are doing it by turning them into variances; one pooled 
variance from within the groups, called the “pooled within variance” and one variance 
from between groups or among groups called the “variance among groups” or “between 
group variance”.   If the variances are not significantly different as judged by the F test, 
then we cannot reject the null hypothesis.  It is possible, as usual, that we make a Type II 
error with some unknown probability ().  If the variances are judged to not be the same, 
then the null hypothesis is probably not true.  Of course we may have made a Type I error, 
with a known probability of    

Some of the calculations later, but this is the basic idea.  

R. A. Fisher  

Ronald Aylmer Fisher is sometimes called the father of modern 
statistics.  Some of his major contributions include the development of 
the basics of design of experiments and Analysis of Variance.   

Born in London 1890, he had very poor eyesight that prevented him 
from learning by electric light.  He had to learn by having things read 
out to him.  He developed the ability view problems geometrically and to figure mathematical 

equations in his head.   In 1909 he won a scholarship to Cambridge.   

He left an academic position teaching mathematics for a position at 
Rothamsted Agricultural Experiment Station.  In this environment 
he developed many applied analyses 
for testing experimental hypotheses 
(Analysis of Variance, circa 1918), 
and provided much of the 
foundation for modern statistics.  

We will see other analyses (in addition to ANOVA) developed by 
Fisher.   Some other contributions by Fisher include the first use of the 
term “null hypothesis”, development of the F distribution, of the Least 
Significant Difference, maximum likelihood estimation and contributed 
to the early use nonparametric statistics.   



Statistical Methods I (EXST 7005)  Page 119 

James P. Geaghan Copyright 2012 

Terminology used in Analysis of Variance  

Treatment – different experimental populations that are contained in an experiment and undergo 
some application or manipulation by the experimenter 

Control or check – a “treatment” that receives no experimental manipulation  

Experimental Unit – the unit to which a treatment is applied 

Sampling Unit – the unit that is sampled or measured  

The linear model is given by ij i ijY     or ij i ijY          

where .( )i i     is estimated by . ..ˆ ( )i iY Y        

The calculation of treatment Sum of Squares for treatments is a sum of the squared treatment 

effects 
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The calculation of treatment Mean Square is a sum of squared effects divided by the degrees of 

freedom.  A variance? 
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A random treatment effect estimates a variance component.  In order for treatments to be random, 
they should be a random selection from a large (theoretically ∞) number of treatments.  
Inferences developed from random treatments are for all the possible treatment levels.  

Examples of random effects  

The term used for the error in an experiment are always random.  They represent random 
variation.  This variation comes from the experimental unit and sometimes the sampling 
unit. 

Compare production rice varieties, where rice varieties represent a random sample from the 
world's rice varieties.  

Estimate the alcohol content of beer, where the beers tested are randomly sampled from all the 
beers in the population of interest (world, national).  

Oxygen levels in bayous, where randomly selected bayous represent all bayous in the state.  

A treatment is FIXED if all possible levels, or all levels of interest, are included in the experiment.  
The treatment levels are selected by the investigator and are probably not chosen from a very 
large number of possible values.  

A fixed treatment estimates the sum of squared fixed effects for the treatments being investigated.  

This is NOT a variance, but the calculation is the same, 
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Examples of fixed effects  

 Experiment includes all of the 7 rice varieties commonly grown in Louisiana  

 Beers are limited to the 5 micro-breweries in Anchorage, Alaska.  




