
Statistical Methods I (EXST 7005)  Page 103 

James P. Geaghan Copyright 2012 

This calculation is, of course, an approximation as the name suggests.  Note that it does 
not usually give nice integer degrees of freedom, expect some decimal places.  This 
is not an issue for computer programs that can get P-values for any d.f.  It does 
complicate using our tables a little.  

There is one additional “simplification”.  We know that the d.f. are at least the smaller of n1–1 
and n2–1.  But what if n1 = n2 = n?  In this case the d.f. will be at least n–1.  However, 
Satterthwaite's approximation will still, usually, yield a larger d.f.  

Summary 

There are two cases in two-sample t-tests.  The case where 2 2
1 2   and the case where 2 2

1 2  .  

There are also some considerations for the cases where n1 = n2 and where n1 ≠ n2.  

Each of these cases alters the calculation of the standard error of the difference being tested and 
the degrees of freedom.  
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d.f. 2 2
1 2   2 2

1 2   

n1 ≠ n2 (n1 – 1) + (n2 – 1) ≥ min[(n1 – 1), (n2 – 1)] 

n1 = n2 =n 2n – 2 ≥ n – 1 

 
For our purposes, we will generally use SAS to conduct two-sample t-tests, and will let SAS 

determine Satterthwaite's approximation when the variances are not equal?  

How does SAS know if the variances are equal?  How does it know what value of  you want to 
use?  Good questions.  Actually, SAS does not know or assume anything.  We'll find out what 
it does later.  

One last thought on testing for differences between two populations.  The test we have been 
primarily discussing is the t test, a test of equality of means.  However, if we find in the 
process of checking variance that the variances differ, then there are already some differences 
between the two populations that may be of interest.   

Numerical example  

Compare the ovarian weight of 14 fish, 7 randomly assigned to receive injections of gonadotropin 
(treatment group) and 7 assigned to receive a saline solution injection (control group).  Both 
groups are treated identically except for the gonadotropin treatment.  Ovarian weights are to 
be compared for equality one week after treatment.  During the experiment two fish were lost 
due to causes not related to the treatment, so the experiment became unbalanced.   
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 Raw data 

Obs Treatment Control 
1 134 70 
2 146 85 
3 104 94 
4 119 83 
5 124 97 
6 * 77 
7 * 80 

 Summary statistics 

Statistic Treatment Control 
n 5 7 

iY  627 586 
2

iY  79,625 49,588 

Y  125.4 83.7 
SS 999 531 
 4 6 
S2 249.8 88.6 

 
Research question: Does the gonadotropin treatment affect the ovarian weight?  (Note: this implies 

a non-directional alternative).   First, which of the various situations for two-sample t-tests do 
we have?  Obviously, n1 ≠ n2.  Now check the variances.  

1) 2 2
0 1 2H :     

2) 2 2
1 1 2H :     

3) Assume Yi  ~ NIDrv, representing the usual assumptions of normality and independence.   

4)  0.05 and the critical value for 4, 6 d.f. is F2,4,6 = 6.23.   

5) We have the samples, and know that the variances are 249.8 and 88.6, and the d.f. are 4 and 
6 respectively.  The calculated value is (given that we have a nondirectional alternative and 
arbitrarily placing the largest variance in the numerator), F = 249.8/88.6 = 2.82 with 4, 6 
d.f.  

6) The critical value is larger than the calculated value.  We therefore fail to reject the null 
hypothesis.  

7) We can conclude that the two samples have sufficiently similar variances for pooling.  

Pooling the variances.  

Recall, 
2 2

2 1 1 2 2 1 2

1 2 1 2
p

S S SS SS
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 

 
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 

 with 10 d.f. 
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Now calculate the standard error for the test, 
d

S , using the pooled variance.   

For this case  

 
1 2

2

1 2

1 1 1 1
153 153 0.343 52.457 7.24

5 7pY Yd
S S S

n n

             
  

, with 10 df  

Completing the two-sample t-test.  

1) 0 1 2H :     .  In this case we could state the null as 0 1 2H :   since  = 0.   

2) 0 1 2H :      or 0 1 2H :       

3) Assume di  ~ NIDr.v. (, 2
 ).  NOTE we have pooled the variances, so obviously we have 

assumed that all variance is homogeneous and equal to 2
 .   

4)  0.05 and the critical value is 2.228 (a nondirectional alternative for =0.05 and 10 df)   

5) We have the samples and know that the means are 125.4 and 83.7.  The calculated t value is:  

1 2 1 2 1 2 1 2

2

1 2

( ) ( ) ( ) 0 125.4 – 83.7 41.7
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 
 

 

 with 10 d.f.  

6) The calculated value (5.76) clearly exceeds the critical value (2.228) value, so we would 
reject the null hypothesis.  

7) Conclude that the gonadotropin treatment does affect the gonad weight of the fish.  We can 
further state that the treatment increases the weight of gonads.  

How about a confidence interval?  Could we use a confidence interval here?  You betcha!  

Confidence interval for the difference between means 

The general formula for a two-tailed confidence interval for normally distributed 
parameters is:  “Some parameter estimate ± t2 * standard error”   

The difference between the means (  1 2    ) is another parameter for which we may 

wish to calculate a confidence interval.  For the estimate of the difference between 1 
and  2 we have already determined that for =0.05 we have t2 = 2.228 with 10 d.f..  

We also found the estimate of the difference   1 2d Y Y  is 41.7 and the std error of 

the difference,  
1 2Y Yd

S S  , is 7.24.   

 The confidence interval is then 
2

a Yd t S  or 41.7± 2.228(7.24) and 41.7 ± 16.13.  The 

probability statement is  

1 2
2 2

( ) 1a ad d
P d t S d t S        

 

1 2(25.57 57.83) 0.95P       

Note that the interval does not contain zero.   This observation is equivalent to doing a test 
of hypothesis against zero.  Some statistical software calculates intervals instead of 
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doing hypothesis tests.  This works for hypothesis tests against zero and is 
advantageous if the hypothesized value of  is something other than zero.  When 
software automatically tests for differences it almost always test for differences from 
zero.   

Summary 

Testing for differences between two means can be done with the two-sample t-test or two sample 
Z test if variances are known.  

For two independently sampled populations the variance will be 
2 2

1 2

1 2

S S

n n
 , the variance of a linear 

combination of the means.  

The problem is the d.f. for this expression are not known.   

Degrees of freedom are known if the variances can be pooled, so we start our two-sample t-test 
with an F-test.  

Variances are pooled, if not significantly different, by calculating a weighted mean.  

2 2
2 1 1 2 2 1 2 1 2

1 2 1 2 1 2( 1) ( 1)p
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The error variance is given by 2

1 2

1 1( )pS
n n
  

The standard error is 2

1 2

1 1( )pS
n n
  

If the variances cannot be pooled, the two-sample t-test can still be done, and degrees of freedom 
are approximated with Satterthwaite’s approximation.  

Once the standard error is calculated, the test proceeds as any other t-test.  

Confidence intervals can also be calculated in lieu of doing the t-test.  
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SAS example 4 – PROC TTEST 

We would normally do two-sample t-tests with the SAS procedure called PROC TTEST.  This 
procedure has the structure  

proc ttest data = dataset name;  
class group variable;  
var variable of interest;  
 

The PROC statement functions like any other proc statement.  

The VARIABLE or VAR statement works the same as in other procedures we have seen.  

The CLASS statement is new.  It specifies the variable that will allow SAS to distinguish 
between observations from the two groups to be tested.  

PROC TTEST Example 4a  

Example from Steele & Torrie (1980) Table 5.2.  

Corn silage was fed to sheep and steers.  The objective was to determine if the percent digestibility 
differed for the two types of animals.  

Example 1: Raw data  

Obs Sheep Steers 
1 57.8 64.2 
2 56.2 58.7 
3 61.9 63.1 
4 54.4 62.5 
5 53.6 59.8 
6 56.4 59.2 
7 53.2  

 
Unfortunately this data is not structured properly for PROC TTEST.  It has two variables 

(sheep and steers) giving the percent digestibility for sheep and steers separately.  

We need one variable with percent digestibility for both and a second variable specifying the 
type of animal.  

This can be fixed in the data step.  

In program note the following;  

Change of the data structure from multivarite to univariate style.   

The proc ttest statement  

Note intermediate statistics, especially  
the confidence intervals for both means and standard deviations 

The test the hypothesis for both means and variances are discussed below.   
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Interpreting the SAS Output 

First examine the last lines 

Equality of Variances 
Variable    Method      Num DF    Den DF    F Value    Pr > F 
percent     Folded F         6         5       1.70    0.5764 
 

SAS is testing the Equality of Variances ( 2 2
0 1 2H :   ).  Notice that SAS provides a “folded F”.  

Most SAS F tests are one-tailed, but this is one of the few places that SAS does a two-tailed F 
test (a “folded F”).  SAS gives the d.f. and the probability of a greater F by random chance.  
We would usually set  = 0.05, and would reject any P-value less than this and fail to reject 
any value greater than this.  In this case we fail to reject.  

 Exactly what did SAS do with the “folded F”.  Recall the two-tailed F allows you to place the 
larger F in the numerator, but you must use 2 as a critical value.  This is what SAS has 
done.  When SAS gave the P value of 0.5764, it is a two tailed P value.  

So we conclude that the variances do not differ.  If doing the test by hand we would now pool the 
variances to calculate the standard error.  

NOW, look at the PROC TTEST output, above the F test.  

t-tests 

Here SAS provides results for both types of test, one calculated using equal variances and another 
done with unequal variances and the user chooses which is appropriate for their case.  Since 
we had equal variances according to the F test we just examined, we would use the first line.   

Variable   Method          Variances    DF  t Value  Pr > |t| 
percent    Pooled          Equal        11    -3.34    0.0065 
percent    Satterthwaite   Unequal    10.9    -3.42    0.0058 
 

From the first line we see that the calculated t value was -3.3442 with 11 d.f.   The probability of 
getting a greater value by random chance (i. e. the H0) is 0.0065, not very likely.  We would 
conclude that there are statistically significant differences between the two animals in terms of 
silage digestibility.   

What about the other line, for unequal variances?  

Variable   Method          Variances    DF  t Value  Pr > |t| 
percent    Pooled          Equal        11    -3.34    0.0065 
percent    Satterthwaite   Unequal    10.9    -3.42    0.0058 
 

This line would be used if we rejected the F test of equal variances.  In this particular case the 
conclusion would be the same since we would also reject H0.  Notice that the d.f. for the 
calculations for unequal variance are not integer.  This is because Satterthwaite's 
approximation was used to estimate the variances.  Since the variances were actually “equal”, 
the estimate is close to (n1–1) + (n2–1) = 11.   

From the SAS STATISTICS output we can conclude that the digestibility is higher for the steers, by 
about 5 percent.   
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Example 4b: from Steele & Torrie (1980) Table 5.6 

Determine if there is a difference in the percent fine gravel found in surface soils. The data is from 
a study comparing  characteristics of soil categorized as “good” or “poor”.  

The raw data  

Good Poor 
5.9 7.6 
3.8 0.4 
6.5 1.1 
18.3 3.2 
18.2 6.5 
16.1 4.1 
7.6 4.7 

Percent fine sand in good and poor soils  

This data is also in the form of two separate variables and must be adjusted to accommodate the 
data structure needed by PROC TTEST.  

In program note the following;  

Change of the data structure from multivarite to univariate style.   

The proc ttest statement  

Note intermediate statistics, especially  
the confidence intervals for both means and standard deviations 

The test the hypothesis for both means and variances are discussed below.   

 
In this case the variances are not quite different, though it is a close call and there is a pretty good 

chance of Type II error.  Fortunately, the result is the same with either test.  

If we go strictly by the “ 0.05” decision rule that we usually use, we would fail to reject the 
hypothesis of equal variances.  

We would then examine the line for equal variances and conclude that there was indeed a 
difference between the good and poor quality soil in terms of the fine sand present.  

The intermediate statistics show that the good soil had about 7 percent more fine sand.  

Statistics               Lower CL          Upper CL  Lower CL 
Variable  soilqual     N      Mean    Mean      Mean   Std Dev  Std Dev 
percent   good         7    5.0559  10.914    16.773    4.0819   6.3344 
percent   poor         7    1.5048  3.9429    6.3809    1.6987   2.6362 
 

Example 4c: Steele & Torrie (1980) Exercise 5.5.6 

The weights in grams of 10 male and 10 female juvenile ring-necked pheasants trapped in January 
in Wisconsin are given.  Test the H0 that males were 350 grams heavier than females.  

In this case the data is in the form needed, one variable for weight and one for sex.  
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Raw data  
Sex    Weight 
Female   1061 
Female   1065 
Female   1092 
Female   1017 
Female   1021 
Female   1138 
Female   1143 
Female   1094 
Female   1270 
Female   1028 

 
Sex    Weight 
Male     1293 
Male     1380 
Male     1614 
Male     1497 
Male     1340 
Male     1643 
Male     1466 
Male     1627 
Male     1383 
Male     1711 

There was, however, one little problem with this analysis.  The hypothesis requested was not 
simply H0: male = female, it was H0: male = female + 350, or H0: male – female =350.  SAS 
does not have provisions to specify an alternative other than zero, but if we subtract 350 from 
the males, we could then test for equality.  We know from our discussion of transformations 
that the variances will be unaffected.  

So we create a new variable called adjwt for “adjusted weight”. See the calculations in the SAS 
program.   

...  
  8    Female     1094      1094 
  9    Female     1270      1270 
 10    Female     1028      1028 
 11    Male       1293       943 
 12    Male       1380      1030 
 13    Male       1614      1264 
 ...  

See SAS OUTPUT Appendix 4c 

Note intermediate statistics 

Note test the hypothesis for both means and variances.   

Note that in the PROC TTEST there is another calculation in the statistics.  This is the “Diff” 
which also gets its calculated value and confidence interval.  This difference is not a paired 
difference, it is the simple difference between the two group means. 

Statistics                   Lower CL          Upper CL 
Variable  sex             N      Mean    Mean      Mean 
AdjWT     Female         10    1038.1  1092.9    1147.7 
AdjWT     Male           10      1041  1145.4    1249.8 
AdjWT     Diff (1-2)             -162   -52.5    56.989 
 

Interpretation of the SAS output 

First, we fail to reject 2 2
0 1 2H :    again (barely).  But the weights do not differ either way 

(examining Pr > |t|).  So we fail to reject H0: 1 = 2, but remember we added 350 to the 
males.  So actually we conclude that the males are greater by an amount not different from 
350 grams.  
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A special case – the paired t-test 

One last case.  In some circumstances the observations are not separate and distinct in the two 
samples.  Sometimes they can be paired.  This can be good, adding power to the design.  

For example:  

We want to test toothpaste.  We may pair on the basis of twins, or siblings in assigning the 
toothpaste treatments.  

We want to compare deodorants or hand lotions.  We assign one arm or hand to one brand an 
the other to another brand.  

In may drug and pharmaceutical studies done on rats or rabbits the treatments are paired on 
litter mates.  

So, how does this pairing affect our analysis?  The analysis is done by subtracting one category 
of the pair from the other category of the pair.  In this way the pair values become 
difference values.  

As a result, what originally appears to be a “two-sample t-test” becomes a one-sample t-test of 
the differences between the two members of each pair.  

So, in many ways the paired t-test is easier.  

Example: We already did an example of this type of analysis.  Recall the Lucerne flowers whose 
seeds we compared for flowers at the top and bottom of the plant.  This was paired and we 
took differences.   The difference was “1” with a standard error of “0.5055”.   

SAS example 2c examined previously  

           Tests for Location: Mu0=0 
Test           -Statistic-    -----p Value------ 
Student's t    t  1.978141    Pr > |t|    0.0793 
Sign           M         2    Pr >= |M|   0.3438 
Signed Rank    S      19.5    Pr >= |S|   0.0469  

 
So the paired t-test is an alternative analysis for certain data structures.  It is better because it 

eliminates the “between pair” variation and compares the treatments “within pairs”.  This 
reduces variance.  

However, note that the degrees of freedom are also cut in half.  If the basis for pairing is not good, 
the variance is not reduced, but degrees of freedom are lost.  

Summary 

The SAS PROC TTEST provides all of the tests needed for two-sample t-tests.  It provides the test 
of variance we need to start with, and it provides two alternative calculations, one for equal 
variance and one for unequal variance.  We choose the appropriate case.  

We also saw that several previous calculations, such as confidence intervals and sample size, are 
also feasible for the two-sample t-test case.  

The paired t-test, where there is a good strong basis for pairing observations, can gain power by 
reducing between pair variation.  However, if the basis for pairing is not good, we lose 
degrees of freedom and power.    
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Calculating a needed sample size  

The Z-test and t-test use a similar formula. 0 0

2

Y Y
Z

n
n

 


 
 



 

Let’s suppose we know everything in the formula except n.  Do we really?  Maybe not, but we can 
get some pretty good estimates.   

Call the numerator ( 0Y  ) a difference, d .  It is some mean difference we want to be able to 

detect, so 0d Y     

The value 2 is a variance, the variance of the data that we will be sampling.  We need this 
variance, or an estimate, S2. 

So we alter the formula to read. 
2

d d
Z

n
n


 



 

What other values do we know?  Do we know Z?  No, but we know what Z we need to obtain 
significance.  If we are doing a 2-tailed test, and we set  0.05, then Z will be 1.96.  

Any calculated value larger will be “more significant”, any value smaller will not be significant.  

So, if we want to detect significance at the 5% level, we can state that ... 

We will get a significant difference if 
2 2

d d
Z Z

n
n


  



 

We square both sides and solve for n.  Then we will also SHOULD get a significant difference if 
2 2

2

2

Z
n

d

 
 .  Then, if we know the values of 2,  and d Z , we can solve the formula for n.  If 

we are going to use a Z distribution we should have a known value of the variance (2).  If the 
variance is calculated from the sample, use the t distribution.  This would give us the sample 
size needed to obtain “significance”, in accordance with whatever Z value is chosen.  

Generic Example 

Try an example where  

d  = 2  

  = 5, 2 = 25 

 Z = 1.96 

So what value of n would detect this difference with this variance and produce a value of Z 
equal to 1.96 (or greater)?  

2 2
2

2

Z
n

d

 
  = (1.962 * 52)/22 = 3.8416(25)/4 = 24.01 

since n  ≥  24.01, round up to 25.  
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Answer, n ≥ 25 would produce significant results.  Guaranteed?  Wouldn't this always produce 
significant results?  Theoretically, within the limits of statistical probability of error, yes, 
but only if the difference was really 2.  If the null hypothesis (no difference, 0) was 
really true and we took larger samples, then we would get a better estimate of 0, and may 
never show significance.  

Considering Type II Error 

The formula we have seen contains only Z2 or t2, depending on whether we have 2 or S2.   
However, a fuller version can contain consideration of the probability of Type II error (b).  

We can often use Z when working with very large samples.  

Remember that to work with TYPE II or  error we need to know the mean of the real distribution.  

However, in calculating sample size we have a difference, 0d Y   . So we can include 

consideration of type II error and power in calculating the sample size.  The consideration of 
 error would be done by adding another Z or t for the error rate.  Notice that below I switch 

to t distributions and use 
2 2

2

2

( )t t S
n

d

 
 .   

Other examples 

We have done a number of tests, some yielding significant results and others not.  If a test yields 
significant results (showing a significant difference between the observed and hypothesized 
values), then we don't need to examine sample size because the sample was big enough.  
However, some utility may be made of this information if we FAIL to reject the null 
hypothesis.  

Note:  Some textbooks give only the formula I originally gave for Z, without the  error 

consideration.   What is the power if you use the formula omitting t from 
2 2

2

2

( )t t S
n

d

 
 ?  

If you set t equal to zero the power is 0.50 and there is a 50% chance of making a Type II 
error.   

An example with t values and  error included 

Recall the Rhesus monkey experiment.  We hypothesized no effect of a drug, and with a 
sample size of 10 were unable to reject the null hypothesis.  However, we did observe a 
difference of +0.8 change in blood pressure after administering the drug.  What if this 
change was real?  What if we made a Type II error?  How large a sample would we need to 
test for a difference of 0.8 if we also wanted 90% power?   

So we want to know how large a sample we would need to get significance at the =0.05 level 
if power was 0.90. In this case  = 0.10.  To do this calculation we need a two tailed  and 
a one tailed  (we know that the observed change is +0.8).  We will estimate the variance 
from the sample so we will use the t distribution.  However, since we don't know the 
sample size, we don't know the degrees of freedom!  Since we do not know the d.f. we will 
start off with some “reasonable” values for t and t.  Then after we solve the equation we 
will have an estimate of the d.f.   We can solve again with better values of t and t, and 
refine our estimate.  After our second calculation we have even better estimates of d.f., so 
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