
Statistical Methods I (EXST 7005)  Page 85 

James P. Geaghan Copyright 2012 

Sample data  

 Habitat 1 Habitat 2 
Observation 1 7.6 5.9 
Observation 2 0.4 3.8 
Observation 3 1.1 6.5 
Observation 4 3.2 18.3 
Observation 5 6.5 18.2 
Observation 6 4.1 16.1 
Observation 7 4.7 7.6 

Summary statistics  

Statistic Habitat 1 Habitat 2 

iY  27.6 76.4 
2

iY  150.52 1074.6 

SS 41.70 240.75 
 6 6 
S2 6.95 40.12 
S 2.64 6.33 

Mean (Y ) 3.94 10.91 

Then calculate the F value as 
2
1

2
2

S 6.95F =  =  = 0.1732 40.12S
 

6) Compare the calculated value (0.1732) to the critical region.  Given  = 0.05 and a TWO 
TAILED alternative, and knowing that the degrees of freedom are 1 =6 and 2=6, (note 
that both are equal), the critical limits are P[0.1718 ≤ F ≤ 5.82] = 0.95.  Since our 
calculated F value is between these limit values we would fail to reject the null hypothesis, 
concluding that the data is consistent with the null hypothesis.  

But it was close. Maybe there is a difference and we did not have enough power.  

Some notes on F tests 

NOTE that in this example the smaller value fell in the numerator.  As a result, we were 
comparing the F value to the lower limit.  

However, for two tailed tests, it makes no difference which falls in the numerator, and which in 
the denominator.  As a result, we can ARBITRARILY decide to place the larger value in the 
numerator, and compare the F value to the upper limit.  

The need to calculate the lower limit can be eliminated if we calculate
2
larger

2
smaller

   
S

F
S

 .  

However, don't forget that this arbitrary placing of the larger variance estimate in the 
numerator is done for TWO TAILED TESTS ONLY, and therefore we want to test against F2.  

There are three common cases in F testing (actually two common and one not so common).  

1) Frequently, particularly in ANOVA (to be covered later), we will test 2 2
0 1 2H :    against 

the alternative, 2 2
1 1 2H :   .  In this case we ALWAYS form the F value as 

2
1

2
2

SF =  
S

.   
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We put the variance that is expected to be larger in the numerator for a one tailed test!  
Don’t forget that this is one tailed and all of  is placed in the upper tail.  In the event that 
F < 1 we don't even need to look up a value in the table, it cannot be “significant”.  

2) Normal 2 tailed tests (used in 2 sample t-tests to be covered later) will test 2 2
0 1 2H :    against 

the alternative, 2 2
1 1 2H :   .  Here we can form the F value as 

2
larger

2
smaller

  
S

F
S

 .   

Don’t forget that this is a 2-tailed test and it is tested against the upper tail with only half of  
(i.e. 2) in the upper tail.   

When the larger value is placed in the numerator there is no way that we can get a calculated  F 
< 1.  

3) If both the upper and lower bounds are required (not common, found mostly on EXAMS in basic 
statistics) then we will be testing 2 2

0 1 2H :    against the alternative 2 2
1 1 2H :   .  We can 

form the F value any way we want, with either the larger or smaller variance in the numerator.   

This is a 2 tailed test with 2 in each tail, and F can assume any positive value (0 to ∞)  

Summary 

The F distribution is ratio of two variances (i.e. two Chi square distributions) and is used test used 
to test two variances for equality.  The null hypothesis is 2 2

0 1 2H :   .   

The distribution is an asymmetrical distribution with values ranging from 0 to ∞, and an expected 
value of 1 under the null hypothesis.  

The F tables require two d.f. (numerator and denominator) and give only a very few critical 
values.  

Many, perhaps most, F tests will be directional.  For the tests the variance that is expected to be 
larger and hypothesized to be larger goes in the numerator whether it is actually larger or not.  
This value is tested against the upper tail with a probability equal to .  

For the non-directional alternative we may arbitrarily place the larger variance in the numerator 
and test against the upper tail, but don't forget to test against 2.  

 

 

 

Probability Distribution interrelationships 

The probability tables that we have been examining are interrelated.  One of these 
interrelationships is actually pretty important!   

If you examine the F table it turns out that in addition to F values the first column is equal to 
values of t2, the last value in the first column corresponds to a Z2 and the last row is a Chi 
square value divided by degrees of freedom.    
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d.f 1 2 ... 10 ... ∞

1 
2 
. 
. 
. 

10 
. 
. 
. 

t2 
(two tailed) 

 
(4.96) 

 

F 
values 

 
more 

F values 
 

∞ Z2 
(3.84) 

 
1=10

� 
1.83 

 1

 
The distributions and relationships we have discussed are:  

1)  i
i

Y
Z





  for observations and 0

Y

Y Y
Z

n

 


 
   for testing hypothesis about means.   

2)  2 = Z2  with 1 d.f.  

 2 = Z2  with n d.f.  

 2 = SS/2 with n–1 d.f.  

3)  
Y

Y Y
t

SS
n

  
    with n–1 d.f.  

4)  
2
1

2
2

SF =  
S

  with n1–1, n2–1 d.f.  

Interrelationships 

1) 2/ with d.f. = F with , ∞ d.f.  

   2 2 2 2

2 2 2

1 1

1 1

SS SS SS
SS S    

      

      
                          

 

which follows an F distribution with , ∞ d.f.  

2) 

2
1

1
2
2

2

F







  with 1, 2 d.f. if H0 is true  

given 
2 2

2
S

   from part 1 above 
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then 
2

2
2

S   and 2 2 2S    and 
2 2

2S  
  with d.f.  

therefore, 
2 2 2 2 2

1 1 1 2 2
2

1 22

SF
S

   
    with n1 – 1, n2 – 1 = 1, 2 d.f.  

if H0 is true, then 2 2
1 2   , then 

2 2
1 2

1 2
F  

   with 1, 2 or n1 – 1, n2 – 1 d.f.  

3) t with = ∞ follows a Z distribution, since as increases the sample variance (S2) approaches 
the population variance (2).  That is, as the sample size approaches infinity the t distribution,  

   
 iY Y

t
S


 approaches the Z distribution 

 iY
Z





 .   

4) Z2 = F with 1, ∞ d.f.  

we saw that Z2 = 2 with 1 d.f.  

we saw that 2/ = F with , ∞ d.f.  

then F = 2/ = Z2/ = Z2/1 = Z2.  

5) t2 with d.f. = F with 1, d.f.  

This can be shown in several ways.  First, we just saw that Z2 = F with 1, ∞ d.f.  This suggests 
that t2 = F with 1, d.f.  Another type of proof is given below.  

2
1

2
2

SF
S

  with 1, 2 d.f.  

recall,  2

iSS Y Y    with n d.f., and where îY
 
is the mean of a subgroup of the data 

partitioned into two (or more) groups (the basis of Analysis of Variance).   

        222

1 1

ˆ ˆ ˆ ˆ
n n

i i i i i i i
i i

SS Y Y Y Y Y Y Y Y Y Y
 

                

d.f are n = (n – 1) + 1  

Let  22
1S n Y    with 1 d.f.  

Let 
 2

2 1
2 1

n

i
i

Y Y
S n




 


 with n–1 d.f.  

both of which are unbiased estimates,  

then 
 2

2
1

2 2
2 2

n YSF
S S


   with 1, n–1 d.f.  

and 
     

2

2 2

2
22

222

n Y Y Y
F t

SSS
n n

  
 

   
    

 
 

  with n–1 d.f.   
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Summary 

1) 2/ with d.f. = F with , ∞ d.f.  

2) 
2 2
1 2

1 2
F  

    with 1, 2 d.f. if Ho is true  

3) t with = ∞ follows a Z distribution 

4) Z2 = F with 1, ∞ d.f.  

5) t2 with d.f. = F with 1, d.f. 

Some Examples in the F tables (all  0.05, two tails for Z and t values since sign is lost in 
squaring)  

F with 1, 10 d.f. = 4.96 = t2 with 10 d.f. = (2.228)2 = 4.96  

F with 1, ∞ d.f. = 3.84 = Z2 = (1.96)2 = 3.84  

F with 10, ∞ d.f. = 1.83 = 2 / = 18.3 / 10 = 1.83 with 10 d.f.  

 

Confidence intervals and margin of error  

The confidence interval is an expression of what we believe to be a range of values that is likely to 
contain the true value of some parameter is called a confidence interval.  The width of this 
interval above and below the parameter estimate is called the margin of error.   

We can calculate confidence intervals for means () and variances (2).  

Confidence intervals for t and Z distributions 

t and Z distribution confidence intervals start with a t or Z probability statement.  

2 2
( ) 1a aP t t t      can also be written  

2 2
( ) 1a a

Y

Y
P t t

S

 
      

which is modified to express an interval about  instead of t (or Z).  

2 2
( ) 1a aY YP t S Y t S        

2 2
( ) 1a aY YP Y t S Y t S           

The final form is given below.   

2 2
( ) 1a aY YP Y t S Y t S        

The expression for Z has an identical derivation.   

2 2
( ) 1

Y Ya aP Y Z Y Z          
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A common short notation for the interval in the probability statement is given as 
2

a YY t S , but 

the probability statement is preferable as a final result.  The value 
2

a Yt S  for intervals on 

means and 
2

at S  for intervals on individual observations is half of the interval width from 

the lower limit to the upper limit and is called the margin of error.   

Confidence intervals for variance 

Variances follow a Chi square distribution.  The confidence interval for variance is based on the 
Chi Square distribution.  

2 2 2( ) 1lower upperP         or  

2 2
2

( ) 1lower upper

SS
P   


     

which is solved to isolate 2.   

2

2 2

1 1
1( )

lower upper

P
SS

 
 

     

2

2 2

1 1
1( )

upper lower

P
SS

 
 

     

giving the expression,  

2
2 2

1( )
upper lower

SS SS
P  

 
     

Notice that the upper tabular Chi square value comes out in the lower bound and the lower Chi 
square in the upper bound.  

2
2 2

1( )
upper lower

SS SS
P  

 
     

Notes on confidence intervals 

One sided intervals are possible, but uncommon. 

Confidence intervals are one of the most common expressions in statistics, frequently occurring in 
publications.  

Margins of error and confidence intervals are not always calculated in statistical software 
programs, but they can easily be done by hand.  

From the previous SAS Example 2c  

We receive a shipment of apples that are supposed to be “premium apples”, with a diameter of at 
least 2.5 inches.  We will take a sample of 12 apples, and place a confidence interval on the 
mean.   The sample values for the 12 apples are;  

2.9, 2.1, 2.4, 2.8, 3.1, 2.8, 2.7, 3.0, 2.4, 3.2, 2.3, 3.4 
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Do we want the Std dev or Std error? 

SAS PROC UNIVARIATE Output 
 
The UNIVARIATE Procedure 
Variable:  diam  (Diameter of the apple) 
 
Moments 
 
N                          12    Sum Weights                 12 
Mean               2.75833333    Sum Observations          33.1 
Std Deviation      0.39418116    Variance            0.15537879 
Skewness           –0.1184219    Kurtosis            –0.8352969 
Uncorrected SS          93.01    Corrected SS        1.70916667 
Coeff Variation    14.2905557    Std Error Mean       0.1137903 
 

The standard deviation is the variation in individual apples.  If we wanted the interval that 
contained 95% of the apples, we would use the standard deviation.  However, we have 
estimated a mean and we want to place a confidence interval that expresses our knowledge of 
this estimate.  Is our estimate of the mean good or poor?  Is the confidence interval narrow or 
wide?   

Note the confidence interval about the mean, and about individual observations.  

For means: 
2 2

( ) 1a aY YP Y t S Y t S         

The margin of error for the mean is 
2

a Yt S  

For individual observations: 
2 2

( ) 1a aP Y t S Y t S        

So we need the mean of the apples and the standard error.  

Mean = 2.758333  

Std Error Mean = 0.11379 (no adjustment needed)  

We also need a t–value.  With 12 apples and 11 d.f., our two tailed t–value is 2.201.  So 

2
a YY t S  or 2.758 ± (2.201)(0.1138) = 2.758 ± (0.250) gives the interval.  The margin of 

error is 0.250 and the best expression is as a confidence interval probability statement.  

P(2.758 – 0.250 ≤  ≤ 2.758 + 0.250) = 1 –   

P(2.508 ≤  ≤ 3.008) = 0.95  

The real value of  may or may not be in this interval, but it is our best evaluation of where the 
true value of  will be.  

For individual observations the calculation uses the standard deviation instead of the standard 
error,  

2 2
( ) 1a aP Y t S Y t S       .  For the apples the standard deviation was 0.3942 

and all other values remain the same.   

2
aY t S  or 2.758 ± (2.201)( 0.3942) = 2.758 ± (0.8676) gives the interval.  The best expression 

is as a confidence interval probability statement.  

P(2.758 – 0.8676 ≤  ≤ 2.758 + 0.8676) = 1 –   

P(1.8904 ≤  ≤ 3.6256) = 0.95  
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Example 2 - Variance CI 

Place a confidence interval on the variance estimate for the apple example.  The variance estimate 
from the SAS output is S2 = 0.155379 and the corrected sum of squares is 1.709.  The Chi 
square values for 11 d.f. are 3.816 (lower) and 21.92 (upper).  

Recall, 2
2 2

1( )
upper lower

SS SS
P  

 
     

Then 21.709 1.709
0.95

21.92 3.816
( )P    and 20.078 0.448 0.95( )P    ,  

for a variance of S2 = 0.155379 and a corrected SS of 1.709.    

A note on hypothesis testing 

Hypothesis tests can be done by calculating a confidence interval for the appropriate value of  
and checking to see if the hypothesized value is contained in the interval.  This approach is 
used in some SAS program output such as Analysis of Variance.    

Summary 

Confidence intervals for  (t or Z distribution) and 2 (Chi square).  

For  (using either the t or Z distribution).  

2 2
( ) 1a aY YP Y t S Y t S        

Where the margin of error for the mean is 
2

a Yt S  or 
2

a YZ S  for Z distribution applications.   

For 2 (Chi square distribution).  

2
2 2

1)(
upper lower

SS SS
P  

 
     

These are common and IMPORTANT calculations.  

The margin of error is the amount added and subtracted from the mean to get the confidence 
interval.  It is equal to 

2
a Yt S   .     

They are not always calculated by statistical software.   

Checking to see if a value falls in the interval is equivalent to perform statistical tests of 
hypothesis against that value.   
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Linear combinations 

Generic Example: We want to create a score we can use to evaluate students applying to LSU as 
freshmen.  

          i i i iScore a VerbalSAT b MathSAT c GPA    

where;  a, b and c are constants and  

VerbalSAT, MathSAT and GPA are variables that vary among students.   

We need to choose values of a, b and c in order to calculate the score.  The average student has 
values of VerbalSAT=500, MathSAT=500 and GPA=2.   

If we choose a=1/3 and b=1/3 and c=1/3 then we have an average of the 3 variables, 
(a+b+c)/3.  The score for the “average” student would be 334.1633.  If we choose a=1 
and b=1 and c=1 we have a simple sum of the variables, (aV+bM+cG).  For the 
average student this would be 1002.5.  Both of these choices produce a score that 
could be used to compare among students.  However, neither of these two choices 
produces a score that resembles the more familiar scores for standardized tests or 
grade point averages.   

But VerbalSAT and MathSAT are values in the hundreds (range: 200 to 800) and the GPA 
is single digits (range: 0 to 4).  If we wanted to scale our scores to more closely 
resemble the mean of these scores we could modify the coefficients for means (a=1/3 
and b=1/3 and c=1/3) by either dividing the standardized tests by an additional 200 
points so their maximum would be 4 (a=1/600 and b=1/600 and c=1/3) producing a 
mean for the average student of 2.5 or we could scale the GPA by multiplying by 200 
to produce a maximum of 800 (a=1/3 and b=1/3 and c=200/3) yielding a score of 500 
for the average student.   

Any of these choices produce a reasonable and acceptable linear combination.  Which one 
is used depends on the objectives and preferences of the user.  We will look at several 
specific applications.   

Mean and Variance of a linear combination  

So what is the mean value of our linear combination, and can we put a variance on it (to get a 
confidence interval)? 

     
3

1
1 2 3     

i
i i i i i iScore a VerbalSAT a MathSAT a GPA a Y



     

Linear combination: i ia Y    

Expected value: 
ii Ya     

Estimate of mean: i ia Y  

Variance of the linear combination.  

The variance of a linear combination is the sum of the individual variances (with squared 
coefficients) plus twice the covariance of the variables (with both coefficients).  

Estimate of the variance: 
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2 2 2i i i j ija S a a S   for i ≠ j   

For example, with the Score we calculated previously, the variance might be 

       
     

2 2 2      

            2 , 2 , 2 ,

VAR Score a VAR Verbal b VAR Math c VAR GPA

abCov Verbal Math acCov Verbal GPA bcCov Math GPA

  

  
 

HOWEVER, if the variables are independent the covariance can be assumed to be zero.  
The linear combination reduces to the sum of the variances of the individual 
variables (with squared coefficients).  

       2 2 2     VAR Score a VAR Verbal b VAR Math c VAR GPA  
 

Utility of linear combinations  
As the course progresses we will see applications of linear combinations to almost everything.  

Two sample t-test:  0 1 2H :     , estimated by 1 2Y Y   .  This is a linear combination! 

The most common case is a test of the linear combination 1 2(1 1)Y Y    , but any other 

combination is possible (e.g. 1 20.8 1 0Y Y  ) and we only need calculate a variance and 

standard error for the given situation.  

     
1 2 1 2

2 22 2 2 2
1 20.8 1 0.8 1 0.64Y Y Y YVar Y Y S S S S     . 

Regression: The model, 0 1i i iY b b X e    is a linear combination.  

Analysis of variance: We will look at contrasts to test for differences between means similar to 
a two sample t-test (but usually with more than two means).  For example, testing the 
hypothesis that some mean is equal to the average of two other means would be done 

as 2 3
0 1 1 2 3

1 1

2 2 2
H : 1 0

          
         

      

An application: Stratified Random Sampling 

Suppose we want to estimate the number of ducks in an area on the Louisiana coast.  The area of 
interest is 300 acres.  We fly 9 transects, counting ducks for 1/10 mile on either side of the 
plane, and from each transect we estimate the number of ducks per acre. We can then 
calculate an estimate and a confidence interval for that estimate.   

Raw data 

Sample Number Ducks counted 
1 8 
2 19 
3 30 
4 23 
5 56 
6 89 
7 2024 
8 1732 
9 1122 
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Summary statistics  

Statistic Value 
n = 9 

sum = 5103 
mean = 567 

var = 684349.25 
std dev = 827.25 

std error = 275.75 
t-value = 2.306 

acres = 300 
 

Estimate and confidence interval for the (300 acres) 

Given this value as the estimate of the true mean number of ducks (), we can state our results 
as a probability statement.   The usual calculation is  

“Some parameter estimate ± t2 * standard error”   

The confidence interval for ducks per acre is 
2

a YY t S  or  567± 2.306 275.75  and 

567 ± 635.88 .  However, we want ducks per 300 acres.  Recall from our discussion of 
transformations that when the mean is multiplied by 300 to get total ducks on the 300 
acres, the variance would be multiplied by 300 squared and the standard deviation 
multiplied by 300.   

So the calculation is     300 567± 2.306 300 275.75 , so the margin of error is 

  2.306 300 275.75 190765  and the interval is 170100 ± 190765  

The probability statement is  

2 2
( ) 1a ducks aY YP Y t S Y t S      

 

 –20665    360865   0.95P     

This calculation is for the number of ducks is the value of interest and the 300 acres the area of 
interest.  

 

Stratification 

Now let’s suppose we noticed that the duck species we were studying and counting were primarily 
a fresh water species, and occurred only infrequently in the brackish and saline zones of the 
300 acres of interest.   We could modify the study and examine the numbers in the 3 zones 
separately.  The advantage is that perhaps we can get 3 separate estimates of homogeneous 
habitat with a smaller variance than one estimate of the heterogeneous whole 300 acres.  We 
will allow that each zone has been determined to encompass 100 acres to simplify our 
analysis.   

The 3 habitat types would be called “strata”, and we could estimate the number for each stratum 
separately and, we assume, independently so we need not consider covariance.   
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The samples were done such that there are 3 samples in each stratum.  

Obs  Saline (CH2O) Brackish (BH2O) Fresh (FH2O) 
1 8 23 2024 
2 19 56 1732 
3 30 89 1122 

n = 3 3 3 
sum = 57 168 4878 

mean = 19 56 1626 
var = 121 1089 211828 

std dev = 11 33 460.248 
std error = 6.35 19.05 265.72 

 

2 2 2 100 100Total Ducks FH O BH O CH OY Y Y Y    

        100 1626  100 56   100 19   1900 + 5600 + 162600  170100Total Ducks       

The estimated total numbers were the same since each the area of each zone was the same.  
Now we need a variance of the mean in order to calculate a confidence interval.     

2 2 2 2 2 2 2 Y Y Y YS a S b S c S  
 

2 2 2

2 2 2 2 2 2 2 
TotalDucks FH O BH O CH OY Y Y YS a S b S c S  

 

     2 2 22  100 211828 100 1089 100 121= 2130380000
TotalDucksYS   

 

 2130380000  15385.347
TotalDucksYS  

 

Linear combination of independent means.   

t-value 2.306
acres 300
estimated total 170100
variance 2,130,380,000
std error 15385.347

margin of error 35478.70
CL-lower 134621.30
CL-upper 205578.70
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Old and new estimates.  

P(–20665 ≤ Total Ducks ≤ 360865) = 0.95  

P(134621  ≤ Total Ducks ≤ 205579) = 0.95  

Why does stratification give a smaller interval width?  Because we replaced one sample 
with a very large variance (684349) with 3 samples, each with a smaller variance (121, 
1089 and 211828).  This reduced the margin of error from 190,765 to  35,478.   

The heterogeneous variances should not have been pooled in the first place.   

You will recall that we mentioned that one way of increasing power is to reduce the variance.  We 
did not dwell on this previously because the only mechanism I could suggest at the time for 
reducing variance was “improving measurement error”.  Now we have another method of 
reducing variance, stratification.  This involves sampling smaller homogeneous units instead 
of one large heterogeneous unit.   

Is the fact that the 3 variances were not similar a problem?  No, nowhere in working with linear 
combinations did we state that the variances had to be similar.  Later we will find that this can 
be advantageous, but it is not necessary for this type of analysis.  It is advantageous in 
analyses where we may want to pool variances to a single, improved estimate.  

Summary 

The use of  “Linear Combinations” is a rather generic technique with many applications 
throughout statistics.  We will see them again in the two sample t-test, regression, and 
ANOVA.  Sampling is another example of the application.   

It is important to determine if the variables in the linear combination are independent or not.  If 
they are, the covariance values can be considered to be zero.  

The linear combination and its variance is calculated as 

Linear combination =
 1

k

i
i ia Y


  

Variance = 2 2 2i i i j ij
i i j

a S a a S   for i ≠ j   

Where, if we can assume the variables are independent the covariances can be assumed to be zero.  
This will be very important later.  We will assume independence in t-test and ANOVA, and 
parts of regression, but not all of regression!  

A final note on linear combinations 

We have been assuming “independence” for a while.  We sample at random to obtain 
independence, and to get a good representative sample.  But do “linear combinations” have 
anything to do with the simpler calculations we talked about earlier when we assumed 
independence, say a test of the mean against an hypothesized value?   

I'm glad you asked.  As a matter of fact the mean is calculated as  1 2 3 nY Y Y ... Y
Y n

     

and that is a linear combination.  Fortunately for us we do not have to consider the 
covariances of individual observations because they are sampled independently! 




