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  Mosquito species 
Time of day A B C 
Mid morning 0.0088 15.4900 5.5000 
Mid Afternoon 1.3400 0.0300 0.8700 
Dusk 0.2600 5.4200 3.2000 

 

The Chi square test statistic is the sum of the chi square values in each cell.   

 2
Observed Expected

32.12335Expected


   with d. f. = (rows–1)*(col–1) =2*2 = 4  

The steps of the hypothesis test 

1) Mosquito species occurrence is independent of time of day 

2) Mosquito occurrence is NOT independent 

3) Assume IID r.v. 

4)  0.05, the critical value with (r–1)(c–1) = 4 d.f. for  0.05 is 9.4877.  

5) From the sample we get a calculated 2=32.12335  

6) The calculated test statistic exceeds the tabular value with (r–1)(c–1) = 4 d.f..  The critical 
tabular values are;   

 0.05,  2 = 9.4877 statistically significant  

 0.01,  2 = 13.2767 highly significant 

 0.001,  2 = 18.4662  Wow!  

Using this terminology we see we have highly significant departure in this case.    

So what is the “P value”, the chance of finding a value of 32.1335 or greater by random 
chance?  This is P(>2)=0.0000018052, about 2 in a million.   

7) So we conclude that the occurrence of mosquito species is not independent of the time of 
day.  It appears to be very dependent.  

SAS example 3a of the Chi square Test of Independence in SAS 

Two varieties of a particular moth species occur in two colors (brown and white).  A biologist 
in North Carolina wants to know if the distribution of the two varieties varies with the area 
of the state.  He collects individuals from each region of the state and note the number of 
each variety.    

See computer output  
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Chi Square Goodness of Fit 

This test is similar to the Chi Square test of independence, but instead of deriving the expected 
values from the row and column sums, the expected values are derived from some theoretical 
distribution.  

In a flowering plant with incomplete dominance a cross between a red flowered parent (RR) and a 
white flowered parent (rr) is expected to yield offspring with pink flowers (Rr).  If the 
offspring are then crossed with each other, a ratio of 9:6:1 or red to pink to white flowered 
offspring should result. In one particular experiment the offspring produced the observed 
results of 153 red, 72 pink and 17 white plants.  Does this result conform to the expected 
results?  

1) H0: Results follow the expected proportions 

2) H1: Results do not follow the expected proportions 

3) Assume IID r.v.  

4) Set  (at say 0.05 or 0.01 as before).  Calculate the critical value where the chi square results 
for this test have c–1 = 2 degrees of freedom (where c is the number of column or the number 
of categories, 3 in this case).  The critical value for  = 0.05 is 5.991 and for  = 0.01 it is 
9.210.  

5) Conduct an experiment to obtain results.  We got 242 flowers from our experiment. 

 Red Pink White Total 
Expected ratio 9 6 1 16 
Expected proportions 0.5625 0.3750 0.0625  
Observed numbers 153 72 17 242 
Expected numbers 136.13 90.75 15.13  
Chi square 2.09 3.87 0.23 6.2 

 
6) Compare the calculated chi square value to the test statistic.  The calculated value (6.2) does 

exceeds the test statistic value of  = 0.05, but not for  = 0.01.   

Tabular Chi square values alpha Chi square value 
n = 3  0.1 4.605 
d.f. = 2 0.0500 5.991 

0.0100 9.210 
0.0010 13.815 

Actual P(>2) 0.0451  
 

7)  In this case we reject the null hypothesis and might term our result as a “statistically 
significant” departure from the expected result under the null hypothesis.  As a published 
result we may wish to state that the P value was 0.0451, clearly indicating that our result was 
significant at the 0.05 level of , but not at a higher level.   

SAS example 3b of the Chi square Goodness of Fit test in SAS 
See computer output  

SAS example 3c – testing a simple ratio with Chi square  
See computer output  
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A final note on the Chi square tests of hypothesis.   

Although tests of hypothesis about variances may be either directional or non-directional, the chi 
square tests of independence are directional.  Small values of the chi square statistics for these 
tests indicate that the null hypothesis is met very well since the observed values are very close 
to the expected values.  It is only with larger departures of the expected values from the 
observed values that the chi square statistic should be rejected.  Therefore, it is only 
excessively large chi square values that cause the null hypothesis to be rejected and this would 
be a one tailed test.   

Summary 

The Chi square distribution  

The Chi square distribution can be derived as the square of the Z distribution.  

Sample variances are Chi square distributed  

The Chi square distribution can be used to test hypotheses about variances.  

The distribution has only one parameter, , (and is different for every ) the distribution is non–
negative and asymmetrical.   The variance of the distribution is 2.   

Hypothesis testing employs the form of the distribution 2
2
0

SS     

For testing variance we assume the variable Yi is a Normally and Independently distributed 
random variable (NID r.v.)  

In the Chi square tables  

Degrees of freedom are on the left and a different distribution is given in each row.  

Selected probabilities in the upper TAIL of the distribution is given in the row at the top of the 
table.  

The distribution is NOT symmetric, so the probabilities at the top must be used for both upper 
and lower limits.  

In addition to tests of variances, the Chi square can be used to do  

Test of Independence  

Test of Goodness of Fit  

For these tests we assume Yi is an Identically and Independently distributed random variable 
(IID r.v.) 

In SAS the Chi square test of independence can be done with PROC FREQ.  



Statistical Methods I (EXST 7005)  Page 81 

James P. Geaghan Copyright 2012 

 

The F test 

This test can be used to either,  

test the equality of population variances – our present topic  

test the equality of population means (this will be discussed later under ANOVA) 

The F test is the ratio of two variances (the ratio of two chi square distributions) 

 Given two populations 

 Population 1 Population 2
Mean  1  2  

Variance 2
1  2

2  

Draw a sample from each population 

 Population 1 Population 2 
Sample size  n1 n2 
d.f. 1 2 
Sample mean  

1Y  2Y  
Sample variance 2

1S  2
2S  

To test the Hypothesis 
2 2

0 1 2H :    

2 2
1 1 2H :  

 
(directional, or one sided,  hypotheses are also possible)  

The test statistic is 
2
1

2
2

  F 
  which has an expected value of 1 under the null hypothesis.  In 

practice there will be some variability, so we need to define some reasonable limits and 
this will require another statistical distribution.  

The F distribution 

1) The F distribution is another family of distributions, each specified by a PAIR of degrees of 
freedom, 1 and 2.  

1 is the d. f. for the numerator  

2 is the d. f. for the denominator  

Note: the two samples do not have to be of the same size and usually are not of the same size.  

2) The F distribution is an asymmetrical distribution with values ranging from 0 to ∞, so [0 ≤ F ≤ 
∞].  

3) There is a different F distribution for every possible pair of degrees of freedom.  

4) In general, an F value with 1 and 2 d.f. is not the same as an F value with 2 and 1 d.f., so 
order is important. i.e. F1, ≠ F,1  usually  
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5) The expected value of any F distribution is 1 if the null hypothesis is true.  

The F distribution 

 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

F distribution with 1, 5 d.f.

F distribution with 5, 10 d.f.

F distribution with 100, 100 d.f.

 

The F tables 

 The numerator d.f. (1) are given along the top of the page, and the denominator d.f. (2) 
are given along the left side of the page.  

 Some tables give only one F value at each intersection of  1 and 2.  The whole page 
would be for a single a value and usually several pages would be given.  

 Our tables will give four values at the intersection of each 1 and 2, each for a different a 
value. These a values are given in the second column from the left.  

 Our tables will have two pages. 

 Only a very few probabilities will be available, usually 0.05, 0.025, 0.01 and 0.005, and 
sometimes 0.100.  

 Only the upper tail of the distribution is given.  

Partial F table 

d.f. P>F 1 2 3 4 5 10 ∞ 
1 0.05 161 199 216 225 230 242 254 
 0.025 648 799 864 900 922 969 1018 
 0.010 4052 4999 5404 5624 5764 6056 6366 
 0.005 16212 19997 21614 22501 23056 24222 25466 
2 0.05 18.5 19.0 19.2 19.2 19.3 19.4 19.5 
 0.025 38.5 39.0 39.2 39.2 39.3 39.4 39.5 
 0.010 98.5 99.0 99.2 99.3 99.3 99.4 99.5 
 0.005 198.5 199.0 199.2 199.2 199.3 199.4 199.5 
3 0.05 10.13 9.55 9.28 9.12 9.01 8.79 8.53 
 0.025 17.44 16.04 15.44 15.10 14.88 14.42 13.90 
 0.010 34.12 30.82 29.46 28.71 28.24 27.23 26.13 
 0.005 55.55 49.80 47.47 46.20 45.39 43.68 41.83 
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Working with F tables 

The F tables are used in a fashion similar to other statistical tables.  

Select a probability value at the intersection of the two degrees of freedom.   

Be sure to keep track of which one is the numerator degrees of freedom (top of table) and 
which is the denominator degrees of freedom (left side of table).  

At the intersection of the degrees of freedom there are four F values corresponding to  values 
of 0.05, 0.25, 0.10 and 0.005.   

Find the corresponding F value for the desired .  

Example of F table use, one tailed example:  

Find F with (5,10) d.f. for  0.05 

find F0.05  such that P[F  ≥  F0.05, 5, 10 d.f.] = 0.050 where 1 =  5 and 2 =  10 

For F5, 10 d.f. The tabular values are listed as 3.33,   4.24,   5.64,   6.87 

These represent 

P[F5, 10 d.f.  ≥  2.52]  =  0.100 (Not in your table)  

P[F5, 10 d.f.  ≥  3.33]  =  0.050 

P[F5, 10 d.f.  ≥  4.24]  =  0.025 

P[F5, 10 d.f.  ≥  5.64]  =  0.010 

P[F5, 10 d.f.  ≥  6.87]  =  0.005 

so the value we are looking for is 3.33.  For this value P[F5, 10 d.f.   ≥  3.33] = 0.050.   

Note that since this is a 1 tailed value, then P[F5, 10 d.f.  ≤ 3.33] = 0.950, so the two sides 
sum to 1  

Also note that if we reverse the d.f., the table shows that P[F10, 5 d.f.   ≥  4.74]  =  0.050,  so the F 
values generally differ when d.f. are reversed  

More working with F tables  

Only the upper tail of the distribution is given.  There are three reasons for this.  

 Most F tests, including those for Analysis of Variance (ANOVA), are one tailed tests, 
where the lower tail is not needed.  

 The need to calculate the lower tail can be eliminated in some two-tailed cases.  

 The value of F for the lower tail can be found by transformation of values from the 
upper tail.  

Calculating lower tail values for the F distribution 

To obtain the lower tail for a value F1,2 for a particular value of   

First obtain the value in the upper tail for F2, 1 for the same value of a (note the change 
in order of the d.f.)  

Then calculate 1/F2,1 to get the lower tail.  
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F table : two-tailed example  

Find both upper and lower limits for F with (8, 10) d.f. for  0.05  

Find F, 8, 10 lower and F, 8, 10 such that  

P[F0.975, 8, 10 ≤ F ≤ F0.025, 8, 10]=0.950 where 1 = 8 and 2 = 10  

For the upper tail, the value we are looking for can be read directly from the table.   It is 
3.85.   

P[F8, 10  ≥  3.85] = 0.025 

note that we use only 2 as the probability for one of the two tails 

To find the lower tail, we reverse the d.f., we find that  

P[F10, 8  ≥  4.30] = 0.025 and then calculate  

F8, 10 d.f. lower limit = 1/F10,8 = 1/4.30 = 0.2326 

Note the reversal of the order of the degrees of freedom 

 Numerical example of an F-test of hypothesis 

The concentration of blue green algae was obtained for 7 phytoplankton-density samples taken 
from each of two lake habitats.  Determine if there is a difference in the variability of 
phytoplankton density between the two habitats.  

1)  2 2
0 1 2H :    

2)  2 2
1 1 2H :     

3) Assume: Independence (randomly selected samples) and that BOTH populations are 
normally distributed.   

4)  0.05 and the critical limit is  

Calculate  

P[Flower ≤ F ≤ Fupper] = 1 – P[Flower ≤ F] – P[F  ≥  Fupper] = 1 – 0.025 – 0.025 = 0.95 

P[F  ≥  Fupper] = 0.025 we can get directly from the table, F=0.025, 6, 6 = 5.82  

P[Flower ≤ F] = 0.025 we calculate as 

1/P[F  ≥  Fupper] = 1/5.82   =  0.1718  

P[0.1718 ≤ F ≤ 5.82] = 0.95 

This case is uncommon because d.f. upper = d.f. lower, so the F values are the same.  

5) Draw a sample of 7 from each habitat; calculate the variances and the F ratio. 
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Sample data  

 Habitat 1 Habitat 2 
Observation 1 7.6 5.9 
Observation 2 0.4 3.8 
Observation 3 1.1 6.5 
Observation 4 3.2 18.3 
Observation 5 6.5 18.2 
Observation 6 4.1 16.1 
Observation 7 4.7 7.6 

Summary statistics  

Statistic Habitat 1 Habitat 2 

iY  27.6 76.4 
2

iY  150.52 1074.6 

SS 41.70 240.75 
 6 6 
S2 6.95 40.12 
S 2.64 6.33 

Mean (Y ) 3.94 10.91 

Then calculate the F value as 
2
1

2
2

S 6.95F =  =  = 0.1732 40.12S
 

6) Compare the calculated value (0.1732) to the critical region.  Given  = 0.05 and a TWO 
TAILED alternative, and knowing that the degrees of freedom are 1 =6 and 2=6, (note 
that both are equal), the critical limits are P[0.1718 ≤ F ≤ 5.82] = 0.95.  Since our 
calculated F value is between these limit values we would fail to reject the null hypothesis, 
concluding that the data is consistent with the null hypothesis.  

But it was close. Maybe there is a difference and we did not have enough power.  

Some notes on F tests 

NOTE that in this example the smaller value fell in the numerator.  As a result, we were 
comparing the F value to the lower limit.  

However, for two tailed tests, it makes no difference which falls in the numerator, and which in 
the denominator.  As a result, we can ARBITRARILY decide to place the larger value in the 
numerator, and compare the F value to the upper limit.  

The need to calculate the lower limit can be eliminated if we calculate
2
larger

2
smaller

   
S

F
S

 .  

However, don't forget that this arbitrary placing of the larger variance estimate in the 
numerator is done for TWO TAILED TESTS ONLY, and therefore we want to test against F2.  

There are three common cases in F testing (actually two common and one not so common).  

1) Frequently, particularly in ANOVA (to be covered later), we will test 2 2
0 1 2H :    against 

the alternative, 2 2
1 1 2H :   .  In this case we ALWAYS form the F value as 

2
1

2
2

SF =  
S

.   
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We put the variance that is expected to be larger in the numerator for a one tailed test!  
Don’t forget that this is one tailed and all of  is placed in the upper tail.  In the event that 
F < 1 we don't even need to look up a value in the table, it cannot be “significant”.  

2) Normal 2 tailed tests (used in 2 sample t-tests to be covered later) will test 2 2
0 1 2H :    against 

the alternative, 2 2
1 1 2H :   .  Here we can form the F value as 

2
larger

2
smaller

  
S

F
S

 .   

Don’t forget that this is a 2-tailed test and it is tested against the upper tail with only half of  
(i.e. 2) in the upper tail.   

When the larger value is placed in the numerator there is no way that we can get a calculated  F 
< 1.  

3) If both the upper and lower bounds are required (not common, found mostly on EXAMS in basic 
statistics) then we will be testing 2 2

0 1 2H :    against the alternative 2 2
1 1 2H :   .  We can 

form the F value any way we want, with either the larger or smaller variance in the numerator.   

This is a 2 tailed test with 2 in each tail, and F can assume any positive value (0 to ∞)  

Summary 

The F distribution is ratio of two variances (i.e. two Chi square distributions) and is used test used 
to test two variances for equality.  The null hypothesis is 2 2

0 1 2H :   .   

The distribution is an asymmetrical distribution with values ranging from 0 to ∞, and an expected 
value of 1 under the null hypothesis.  

The F tables require two d.f. (numerator and denominator) and give only a very few critical 
values.  

Many, perhaps most, F tests will be directional.  For the tests the variance that is expected to be 
larger and hypothesized to be larger goes in the numerator whether it is actually larger or not.  
This value is tested against the upper tail with a probability equal to .  

For the non-directional alternative we may arbitrarily place the larger variance in the numerator 
and test against the upper tail, but don't forget to test against 2.  

 

 

 

Probability Distribution interrelationships 

The probability tables that we have been examining are interrelated.  One of these 
interrelationships is actually pretty important!   

If you examine the F table it turns out that in addition to F values the first column is equal to 
values of t2, the last value in the first column corresponds to a Z2 and the last row is a Chi 
square value divided by degrees of freedom.    
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d.f 1 2 ... 10 ... ∞

1 
2 
. 
. 
. 

10 
. 
. 
. 

t2 
(two tailed) 

 
(4.96) 

 

F 
values 

 
more 

F values 
 

∞ Z2 
(3.84) 

 
1=10

� 
1.83 

 1

 
The distributions and relationships we have discussed are:  

1)  i
i

Y
Z





  for observations and 0

Y

Y Y
Z

n

 


 
   for testing hypothesis about means.   

2)  2 = Z2  with 1 d.f.  

 2 = Z2  with n d.f.  

 2 = SS/2 with n–1 d.f.  

3)  
Y

Y Y
t

SS
n

  
    with n–1 d.f.  

4)  
2
1

2
2

SF =  
S

  with n1–1, n2–1 d.f.  

Interrelationships 

1) 2/ with d.f. = F with , ∞ d.f.  

   2 2 2 2

2 2 2

1 1

1 1

SS SS SS
SS S    

      

      
                          

 

which follows an F distribution with , ∞ d.f.  

2) 

2
1

1
2
2

2

F







  with 1, 2 d.f. if H0 is true  

given 
2 2

2
S

   from part 1 above 
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then 
2

2
2

S   and 2 2 2S    and 
2 2

2S  
  with d.f.  

therefore, 
2 2 2 2 2

1 1 1 2 2
2

1 22

SF
S

   
    with n1 – 1, n2 – 1 = 1, 2 d.f.  

if H0 is true, then 2 2
1 2   , then 

2 2
1 2

1 2
F  

   with 1, 2 or n1 – 1, n2 – 1 d.f.  

3) t with = ∞ follows a Z distribution, since as increases the sample variance (S2) approaches 
the population variance (2).  That is, as the sample size approaches infinity the t distribution,  

   
 iY Y

t
S


 approaches the Z distribution 

 iY
Z





 .   

4) Z2 = F with 1, ∞ d.f.  

we saw that Z2 = 2 with 1 d.f.  

we saw that 2/ = F with , ∞ d.f.  

then F = 2/ = Z2/ = Z2/1 = Z2.  

5) t2 with d.f. = F with 1, d.f.  

This can be shown in several ways.  First, we just saw that Z2 = F with 1, ∞ d.f.  This suggests 
that t2 = F with 1, d.f.  Another type of proof is given below.  

2
1

2
2

SF
S

  with 1, 2 d.f.  

recall,  2

iSS Y Y    with n d.f., and where îY
 
is the mean of a subgroup of the data 

partitioned into two (or more) groups (the basis of Analysis of Variance).   

        222

1 1

ˆ ˆ ˆ ˆ
n n

i i i i i i i
i i

SS Y Y Y Y Y Y Y Y Y Y
 

                

d.f are n = (n – 1) + 1  

Let  22
1S n Y    with 1 d.f.  

Let 
 2

2 1
2 1

n

i
i

Y Y
S n




 


 with n–1 d.f.  

both of which are unbiased estimates,  

then 
 2

2
1

2 2
2 2

n YSF
S S


   with 1, n–1 d.f.  

and 
     

2

2 2

2
22

222

n Y Y Y
F t

SSS
n n

  
 

   
    

 
 

  with n–1 d.f.   
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Summary 

1) 2/ with d.f. = F with , ∞ d.f.  

2) 
2 2
1 2

1 2
F  

    with 1, 2 d.f. if Ho is true  

3) t with = ∞ follows a Z distribution 

4) Z2 = F with 1, ∞ d.f.  

5) t2 with d.f. = F with 1, d.f. 

Some Examples in the F tables (all  0.05, two tails for Z and t values since sign is lost in 
squaring)  

F with 1, 10 d.f. = 4.96 = t2 with 10 d.f. = (2.228)2 = 4.96  

F with 1, ∞ d.f. = 3.84 = Z2 = (1.96)2 = 3.84  

F with 10, ∞ d.f. = 1.83 = 2 / = 18.3 / 10 = 1.83 with 10 d.f.  

 

Confidence intervals and margin of error  

The confidence interval is an expression of what we believe to be a range of values that is likely to 
contain the true value of some parameter is called a confidence interval.  The width of this 
interval above and below the parameter estimate is called the margin of error.   

We can calculate confidence intervals for means () and variances (2).  

Confidence intervals for t and Z distributions 

t and Z distribution confidence intervals start with a t or Z probability statement.  

2 2
( ) 1a aP t t t      can also be written  

2 2
( ) 1a a

Y

Y
P t t

S

 
      

which is modified to express an interval about  instead of t (or Z).  

2 2
( ) 1a aY YP t S Y t S        

2 2
( ) 1a aY YP Y t S Y t S           

The final form is given below.   

2 2
( ) 1a aY YP Y t S Y t S        

The expression for Z has an identical derivation.   

2 2
( ) 1

Y Ya aP Y Z Y Z          
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A common short notation for the interval in the probability statement is given as 
2

a YY t S , but 

the probability statement is preferable as a final result.  The value 
2

a Yt S  for intervals on 

means and 
2

at S  for intervals on individual observations is half of the interval width from 

the lower limit to the upper limit and is called the margin of error.   

Confidence intervals for variance 

Variances follow a Chi square distribution.  The confidence interval for variance is based on the 
Chi Square distribution.  

2 2 2( ) 1lower upperP         or  

2 2
2

( ) 1lower upper

SS
P   


     

which is solved to isolate 2.   

2

2 2

1 1
1( )

lower upper

P
SS

 
 

     

2

2 2

1 1
1( )

upper lower

P
SS

 
 

     

giving the expression,  

2
2 2

1( )
upper lower

SS SS
P  

 
     

Notice that the upper tabular Chi square value comes out in the lower bound and the lower Chi 
square in the upper bound.  

2
2 2

1( )
upper lower

SS SS
P  

 
     

Notes on confidence intervals 

One sided intervals are possible, but uncommon. 

Confidence intervals are one of the most common expressions in statistics, frequently occurring in 
publications.  

Margins of error and confidence intervals are not always calculated in statistical software 
programs, but they can easily be done by hand.  

From the previous SAS Example 2c  

We receive a shipment of apples that are supposed to be “premium apples”, with a diameter of at 
least 2.5 inches.  We will take a sample of 12 apples, and place a confidence interval on the 
mean.   The sample values for the 12 apples are;  

2.9, 2.1, 2.4, 2.8, 3.1, 2.8, 2.7, 3.0, 2.4, 3.2, 2.3, 3.4 




