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Power and Type II Error 

Since we don't actually know the value of the true mean (or we wouldn't be hypothesizing 
something else), we cannot know in practice the type II error rate ().  However, it is affected 
by a number of things, and we can know about these.  

1) Power is affected by the distance between the hypothesized mean (0) and true 
mean ().  

 

 

The Power Curve 

Difference between true and hypothesized mean
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2) Power is affected by the value chosen for Type I error ().  
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3) Power is affected by the variability or spread of the distribution.  
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Influencing the power of a test of hypothesis  

The capability of the test to reject H0 when it is false is called Power = 1 – .  Anything done to 
enhance this value will improve your ability to test for differences among populations.  Which 
of the 3 factors influencing power can you control?   

For testing means you may be able to control sample size (n).  This reduces the variability and 
increases power. 

You probably cannot influence the difference between  and 0. 

You can choose any value of .  However, this cannot be too small or Type II error becomes 
more likely.  Too large and Type I error becomes likely.  

Methods of increasing the power of a test   

How would we use our knowledge of factors affecting power to increase the power of our tests 
of hypothesis?  

Increase the significance level (e.g. from  = 0.01 to  = 0.05) 

If H0 is true we would increase , the probability of a Type I error.  

If H0 is false then we decrease , the probability of a Type II error, and by decreasing , 
we are increasing the POWER of test.  

For a given , the POWER can be increased by ....  

Increasing n, so 
2

Y n n
     decreases, and the amount of overlap between the 

real and hypothesized distributions decreases.  

For example, let’s suppose we are conducting a test of the hypothesis H0:  = 0 against 
the alternative H1:  ≠  0.  We believe 0 = 50 and we set  = 0.05.  We also know 
that 2 = 100 and that n = 25.  

From this information we can calculate 10 25Y n
    .  The critical region in 

terms of Z is then P(|Z| ≥ Z0) = 0.05 and Z0 = 1.96, and the critical value on the 
original scale Y variable scale is Yi =  + Zi  = 50 + 1.96(2) = 53.92.  

If the REAL population mean is 54, calculate P(Y  ≥ 53.92), given that the TRUE mean 
is 54 we calculate the Z value as Z = (53.92 – 54)/2 = –0.08 / 2 = –0.04.  
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The probability of a TYPE II error () is the probability of not drawing a sample that 
falls above this value and not rejecting the false null hypothesis.  The value is  = 
P(Z ≤ –0.04) = 0.4840.  

So for an experiment with n = 25, the power is 1 –   = 1 – 0.4840 = 0.516.  

But suppose we had a larger sample, say n = 100.  Now 10 110Y n
    .  The critical 

region stays at Z0 = 1.96, but on the original scale this is now Yi =  + Zi  = 50 + 
1.96(1) = 51.96.   For a true mean of 54 we now get Z = (51.96–54)/1 = –2.04/1 = –
2.04.  

The value of   = is P(Z ≤ –2.04) = 0.0207, and the power for this test is 1 –  = 0.9793.  

The bottom line, 

With n = 25, the power is 0.5160.  

With n = 100, the power is 0.9793.  

This is why statisticians recommend larger sample sizes so strongly.  We may never really 
know what power is, but we know how to increase it and reduce the probability of 
TYPE II error.  

Summary 

Hypothesis testing is prone to two types of errors, one we control () and one we do not ().  

Type I error is the REJECTION of a true null hypothesis. 

Type II error is the FAILURE TO REJECT a null hypothesis that is false.  

The “Power” of a test is 1 –   

Not only do we not control TYPE II error, we probably do not even know its value.  However, we 
can hopefully reduce this error, and increase power, by  

Controlling the distance between  and 0 (not really likely)  

Selecting a value of  that is not too small (0.05 and 0.01 are the usual values)  

Getting a larger sample size (n), this is the factor that is usually under the most control of the 
investigator.  

 

The t-test of hypotheses  

The t distribution is used the same as Z distribution, except it is used where sigma () ,is unknown 
(or where Y  is used instead of  to calculate deviations).  The t distribution is a bell shaped 
curve, like the Z distribution, but not the same.  The Z distribution is normal because it has a 
normal distribution in the numerator (Yi) and all other terms in the transformation are 
constant. The t distribution has a normal distribution in the numerator but the sample variance 
in the denominator is another statistic with a chi square distribution.  

 i

i
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S


  ; the t distribution applied to individual observations 
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  
  ; the t distribution used for hypothesis testing  

where;  

S = the sample standard deviation, (calculated using Y  instead of )  

YS  = the sample standard error  

The variance of the t distribution is greater than that of the Z distribution (except where n → ∞), 
since S2 estimates 2, but is never as good (reliability is less) 

 Z distribution t distribution 
Mean 0 0 

variance 1 ≥1 

Characteristics of the t distribution 

E(t) = 0, the expected value of the t distribution is zero.  

It is symmetrically distributed about a mean of 0 with t values ranging between ±∞     
(i.e. –∞ ≤ t ≤ +∞) 

There is a different t distribution for each degree of freedom (df), since the distribution changes as 
the degrees of freedom change.  

It has a broader spread for smaller df, and narrows (approaching the Z distribution) as df increase.  
As the df (, gamma) approaches infinity (∞), the t distribution converges the Z distribution.  

For example;  

Z (no df associated); middle 95% is between ± 1.96 

t with 1 df; middle 95% is between ± 12.706 

t with 10 df; middle 95% is between ± 2.228 

t with 30 df; middle 95% is between ± 2.042 

t with ∞ df; middle 95% is between ± 1.96 

How does the test for the t distribution differ from the Z distribution?   

 For the Z distribution, since Yi is normally distributed, subtracting a constant () and 
dividing by a constant () does not affect the distribution and Z is normal.   

 For the t distribution we also have a normally distributed Yi and we subtract a constant 
(), but we divide by a statistic (S), not a constant ().   

 This alters the distribtuion so that it is not quite a  normal distribution.  The extra 
incertainty causes the t distribution to be “broader” than the Z distriution.   

 However, as sample size increases the value of S approaches   and the t distribution 
converges on the Z distribution.   
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Probability distribution tables in general 

The tables we will use will ALL be giving the area in the tail ().  However, if you examine a 
number of tables from other sources you will find that this is not always true.  Even when it is 
true, some tables will give the value of  as if it were in two tails, and some as if it were in 
one tail.  

For example, we want to conduct a two-tailed Z test at the  = 0.05 level.  We happen to know 
that Z = 1.96.  If we look at this value in the Z tables we expect to see a value of 0.025, or 
2.  But many tables would show the probability for 1.96 as 0.975, and some as 0.05.  

Why the difference?  It just depends on how the tables are presented.  Some of the alternatives 
are shown below.  

Some tables give cumulative distribution starting at – infinity.  You want to find the 
probability corresponding to 1 – 2.  The value that leaves .025 in the upper tail 
would be 0.975. 

Some tables may start at zero (0.0) and give the cumulative area from this point for the 
upper half of the distribution.  This would be less common.  The value that leaves .025 
in the upper tail would be 0.475.  

Among the tables like ours, that give the area in the tail, some are called two tailed tables 
and some are one tailed tables. 

One tailed table. 
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1- 

Table value,
0.0.025

 

Two tailed table. 

Table value,
0.050

1-
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Why the extra confusion at this point?  

All our tables will give the area in the tail.  

The Z tables we used gave the area in one tail.  For a two tailed test you needed to doubled the 
probability.  

For the F tables and Chi square tables covered later, this area will be a single tail as with the Z 
tables.  This is because these distributions are not symmetric.  

Traditionally, many t-tables have given the area in TWO TAILS instead of on one tail.  

Many textbooks have this type of tables.  

SAS will also usually give two-tailed values for t-tests.  
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Our tables will have both two-tailed probabilities (top row) and one-tailed probabilities 
(bottom row), so you my use either.   

The same patterns are true for many of the computer programs that you may use to get 
probabilities.  For example in EXCEL 

If you use the NORMDIST(1.96) function it returns 0.975, one tail, cumulative from –∞  

If you enter NORMSINV(0.025) it returns –1.96, the two tailed value  

If you enter TINV(0.05,9999) it returns 1.96, so it is also two-tailed.  

The TDIST(1.96,9999,1) function allows you to specify 1 or 2 tails in the function call.  

The t tables   

My t-tables are created in EXCEL, but patterned after Steel & Torrie, 1980, pg. 577.   

The degrees of freedom, “d.f.” or , are given on the left side of the table.   

The probability of randomly selecting a larger value of t is given at the top (and bottom) of the 
page.  

P(t  ≥  t0)  given at the bottom, this is a one-tailed probability.   

P(|t|  ≥  t0)  given at the top, this is a two-tailed probability (not the absolute value signs) 

Each row represents a different t distribution (with different d.f.).  

The Z table had many probabilities, corresponding to Z values of 0.00, 0.01, 0.02, 0.03, etc.  
About 400 probabilities occurred in the tables we used.  They all fit on one page because 
the whole Z table was a single distribution.  The t table has many different distributions so 
less information is given about each distribution.  

 If we are going to give many different t-distributions on one page, we lose something.  We 
will only give a few selected probabilities, the ones we are most likely to use.  

e.g., 0.10, 0.05, 0.025, 0.01, 0.005.  

Only the POSITIVE side of the table is given, but as with the Z distribution, the t distribution is 
symmetric, so the lower half of the table can be determined by using the upper half.   

Our t-tables 

Partial t-table – 1 or 2 tails? 

df 0.100 0.050 0.025 0.010 0.005 
1 3.078 6.314 12.71 31.82 63.656 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 
6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.355 
9 1.383 1.833 2.262 2.821 3.250 
10 1.372 1.812 2.228 2.764 3.169 
 1.282 1.645 1.960 2.326 2.576 
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Note the selected d.f. on the left side.  

The table stabilizes fairly quickly.  Many tables don't go over about d.f. = 30.  The Z tables give 
a good approximation for larger d.f.  

Our tables will give d.f. as follows down the left most column of the table,  

1, 2, 3, 4, 5 ,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ,20,  21, 22, 23, 24, 25, 26, 27, 
28, 29, 30, 32, 34, 36, 38, 40, 45, 50, 75, 100, ∞  

Selected probabilities  

In the topmost row of the table selected probabilities will be given as  for a TWO 
TAILED TEST.  

In the bottom-most row of the table selected probabilities will be given as  for a ONE 
TAILED TEST.  

Probabilities in our tables are,  

Top row: 0.50 0.40 0.30 0.20 0.10 0.050 0.02 0.010 0.002 0.0010 
Bottom row: 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 

 

HELPFUL HINT:  Don't try to memorize “two tail top, one tail bottom”, just recall the 
characteristics of the distribution when df = ∞ then t = 1.96.  This leaves 5% in both tails 
and 2.5% in one tail.  So take any t-table and look to see what probability corresponds to 
df=∞ and t = 1.96.  If the value is 0.025, it is the area in one tail of the distribution and if it 
is 0.050 it is a two tailed table.  If the area is 0.975 it is cumulative from – ∞, etc.   

This trick of recalling 1.96 also works for Z tables.  The tables we use give the area in the tail 
of the distribution, Z = 1.96 corresponds to a probability of 0.025.  Some Z tables give the 
cumulative area under the curve starting at –∞, the probability at Z = 1.96 would be 0.975.  
Other Z tables give the cumulative area starting at 0, the probability at Z = 1.96 would be 
0.475  

Working with our t-tables 

Example 1. Let d.f. =  = 10  

H0:  0  versus H1:   ≠  0 and  = 0.05  

P(|t| ≥ t0) = 0.05; 2P(t ≥ t0)=0.05;  
P(t ≥ t0)=0.025  
(Probabilities at the top of the table) 

t0=2.228  

Example 2. Let d.f. =  = 10  

H0:  0  versus H1:  0 and  = 0.05  

P(t ≥ t0) = 0.05  
(probabilities at the bottom of the table)  

t0=1.812  
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Look up the following values.   

Find the t value for H1:  ≠ 0, =0.050, d.f. = ∞     1.960
Find the t value for H1:  > 0,  = 0.025, d.f. = ∞  1.960
Find the t value for H1:  ≠ 0,  = 0.010, d.f. = 12   3.055
Find the t value for H1:  > 0,  = 0.025, d.f. = 22   2.074
Find the t value for H1:  ≠ 0,  = 0.200, d.f. = 35    1.306
Find the t value for H1:  ≠ 0,  = 0.002, d.f. = 5   5.894
Find the t value for H1:  < 0,  = 0.100, d.f. = 8   –1.397
Find the t value for H1:  < 0,  = 0.010, d.f. = 75   –2.377 
Find the P value for t = –1.740, H1:  < 0, d.f. = 17    0.050
Find the P value for t = 4.587, H1:  ≠ 0, d.f. = 10    0.001 

t-test of Hypothesis 

We want to determine if a new drug has an effect on blood pressure of rhesus monkeys before and 
after treatment.  We are looking for a net change in pressure, either up or down (two-tailed 
test).  

Example 1 of the t-test 

We obtain a random sample of 10 individuals.  Note: n = 10, but d.f. =  = 9 

1) H0:  0  where 0 = 0  

2) H1:   ≠ 0  

3) Assume: Independence (randomly selected sample) and that the CHANGE in blood 
pressure is normally distributed.  

4) We set  = 0.01, but split between two tails (to meet the alternate hypothesis).   

P(|t| ≥ t0) = 0.01; 2P(t ≥ t0) = 0.01; P(t ≥ t0) = 0.005 in each tail  

The critical value of t is:   

Given that it is a 2 tailed test, with 9 d.f. (n = 10, but d.f. =  = 9) and we set = 0.01 

Under these conditions, the critical limit from the t-table is t0 = 3.250  

5) Obtain values from the sample of 10 individuals (n = 10).  The values for change in blood 
pressure were; 0, 4, –3, 2, 0, 1, –4, 5, –1, 4  

1

0 4 – 3 2 0 1– 4 5 –1 4 8
n

i
i

Y


         

2

1

0 16 9 4 0 1 16 25 1 16 88
n

i
i

Y


            

1
8

0.8
10

n

i
i

Y
Y n
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
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3.011 3.011
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n
     

Finally, the value of the test statistic, a t value in this case, is  

   0 0.8 0
0.840

0.952Y

Y
t

S

 
     with 9 d.f.  

6) Compare the critical limit to the test statistic and decide to reject or fail to reject.   

The critical limit from the t-table is t0 = 3.250  

The test statistic calculated from the sample was 0.840 (9 d.f.) 

The area leaving 0.005 in each tail is almost 
too small to show on our usual graphs.   

The test statistic is clearly in the region of 
“acceptance”, so we fail to reject the H0.  

7) Conclude that the new drug does not affect the 
blood pressure of rhesus monkeys.  Is there 
an error?  Maybe a Type II error, but not a Type I error since we did not reject the null 
hypothesis.  

Example 2 of the t-test 

A company manufacturing environmental monitoring equipment claims that their thermograph 
(a machine that records temperature) requires (on the average) no more than 0.8 amps to 
operate under normal conditions.  We wish to test this claim before buying their 
equipment.  We want to reject the equipment if the electricity demand exceeds 0.8 amps.   

1) H0:  0 , where 0 = 0.8   

2) H1:  0  

3) Assume (1) independence and (2) a normal distribution of amp values, or at least of the 
mean that we will test.   We do not assume a known variance with the t-test, we use a 
variance calculated from the sample.   

4) We set  = 0.05.  The critical value of t for considers that   

we are doing a 1 tailed test (see H1:) with 15 d.f. (n = 16, but d.f. =  = 15) and  = 0.05  

P(t ≥ t0) = 0.05  from the table is t0 = 1.753  
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5) Draw a sample.  We have 16 machines for testing.  The individual values for amp 
readings were not recorded.  Summary statistics are given below;  

0.96Y   

0.32YS 
 

 

0.32
0.08

16
Y

Y

S
S

n
    

   0 0.96 0.8
2.00

0.08Y

Y
t

S

 
     with 15 d.f.  

6) Compare the critical limit and to the test 
statistic.  

The critical limit from the table is t0 = 1.753 
and the calculated test statistic was t = 2 
(with 15 d.f.) 

Clearly, the test statistic exceeds the one tailed critical limit and falls in the upper tail of 
the distribution in area of rejection.  

7) Conclusion: We would conclude that the machines require more electricity than the 
claimed 0.8 amperes.  Of course, there is a possibility of a Type I error.  

t test with SAS 

SAS example (#2a)   

Recall our test of blood pressure change of Rhesus monkeys.  We can take the values of blood 
pressure change, and enter them in SAS PROC UNIVARIATE.  

Values: 0, 4, –3, 2, 0, 1, –4, 5, –1, 4  

SAS PROGRAM DATA step 

OPTIONS NOCENTER NODATE NONUMBER LS=78 PS=61; 
   TITLE1 't-tests with SAS PROC UNIVARIATE'; 
DATA monkeys; INFILE CARDS MISSOVER; 
   TITLE2 'Analysis of Blood Pressure change in Rhesus Monkeys'; 
   INPUT BPChange; 
CARDS; RUN; 
 The data would follow the cards statement ending with a semicolon  
PROC PRINT DATA=monkeys; RUN; 
PROC UNIVARIATE DATA=monkeys PLOT; VAR BPChange; 
    TITLE2 'PROC Univariate on Blood Pressure Change'; RUN; 

 

The PROC UNIVARIATE from SAS® will perform a two-sample t-test.   

See SAS PROGRAM output.  

t0 = 1.753
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