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Tests of hypothesis 

Hypothesis – a contention based on preliminary evidence of what appears to be fact (an educated 
guess), which may or may not be true. 

 Formulating a hypothesis is the second step in the scientific method.  

 A statement of the hypothesis is the first step in experimentation.  

Test of hypothesis – a comparison of the contention with a set of newly gathered data. 

Hypothesis testing procedure – we will consider 7 steps  

I. Set up a meaningful hypothesis such as “The population mean is equal to some value” (call it 
0)  

H0:  = 0    or     – 0 = 0  

This is called the null hypothesis.  It is a hypothesis of equality or of no difference (even if 
you believe there is a difference).  Note that hypotheses are always stated in terms of 
the population parameters, not the sample statistics we actually measure, because we 
are drawing inference about the population.  

II. Set up an alternative hypothesis 

Alternative hypotheses are denoted H1 or Ha.  This hypothesis states what is correct if the 
null hypothesis in not correct.  This is usually the case of actual interest.  

Examples: 

a) 1 0 1 0H :    or H :     0       (also called the non-directional alternative)  

b) 1 0 1 0H :  <  or H :     0       

c) 1 0 1 0H :  >  or H :     0       

III. Consider the assumptions.  

1) We will be using the Z distribution, so the distribution we are testing must be normal. 

2) The observations should be independent.  The best guarantee of independent 
observations is random sampling.  

3) Strictly speaking, the variance should be known in order to use the Z distribution; 
however it is often used for very large samples.  Later we will discuss the t-
distribution that is used when the variance is not known and must be estimated from 
the sample.  

There will be a few other assumptions for other test statistics.  However, the tests of 
hypothesis we will be using are also “robust”.  Statistically speaking, robustness 
indicates that the test performs quite well even if the assumptions are not perfectly 
met.  

IV. Select a probability of rejecting the null hypothesis (H0) when it is true.   This is called the 
alpha () value and the value chosen is somewhat arbitrary.  By convention the values 
usually chosen is  = 0.05 or sometimes  = 0.01.  

for  = 0.05 then if H0 is true we will reject it 5% of the time, or in one of 20 samples 

for  = 0.01 then if H0 is true we will reject it 1% of the time, or in one of 100 samples 
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This value is sometimes called the significance level.  

From this value, and the alternate hypothesis, we can determine the critical limits, those 
values of the test statistic that would cause us to reject the null hypothesis.  

Determine a critical region, what is too large or too small by using the chosen 
probability or significance level.  

Critical region – the area in the distribution which would lead to rejection of the null 
hypothesis (H0:).  When we reject we know that it is possible that the null 
hypothesis is true, but if it is we would only reject 100% of the time.  So this 
type of error can be controlled.  

Region of “acceptance” – the area under the distribution which would lead to 
“acceptance” of the null hypothesis (H0:).  

0 
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
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Region of "Acceptance"
Upper Critical
Region

Lower Critical
Region

Z values

 

 

Notice that I have placed the word “acceptance” in quotes.  We cannot really state that we 
“accept” the null hypothesis because it is also possible that we would be wrong in 
doing so.  Unfortunately, in practice the probability of this type of error is unknown 
and therefore one cannot “accept” with a known probability of error (more later under 
Type II error and Power).  

V. Draw a sample from the population of interest (as defined by the investigator), and  

a) Compute an estimate of the parameter in the hypothesis; in our example the hypothesis 
was about  so the statistic will be Y , recall  E(Y ) =   

b) The value of Y  from the sample now becomes one of many possible observations from 
the derived population of all sample means.  

c) Recall that the derived population has, 

Y   

22
Y n

   

2

Y n n
      

d) Recall that the distribution of sample means ( kY ) approaches a normal distribution as 

the value of n increases (according to the Central Limit Theorem).  This helps meet 
our assumption of normality.  
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e) Recall the Z transformation
 i Y

i

Y

Y
Z






.  

Our null hypothesis contends that the true value of Y  is our hypothesized value, 0 , so 

we will calculate a Z score using 0 .  This will follow a Z distribution if the null 

hypothesis is correct.  If the null hypothesis is not correct we don’t care what the 
distribution is, we just hope to reject the null hypothesis.  
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As a result, where 0  is the hypothesized value of the mean, if the null hypothesis is 

true and 0   we would expect Z to be approximately zero (within reasonable 

limits, defined later).  On the other hand, if 0  we would expect Z to be 

different from zero by some amount.  If Z is too much greater than zero (i.e. Z > 0), 
that suggests that Y  is too large while if Z is much less than zero, then Y  appears 

to be too small.  

VI. Compare the test statistic from step V to the critical region determined in step IV.  

VII. Draw conclusions and interpretations from the results of the test.  The test statistic is not 
an end in itself.  

Logic behind the test 

A key aspect of a test of hypothesis is that we must have a test statistic with a known 
distribution. 

We could sample from any one of numerous populations with many different distributions.  
The characteristics of these distributions are unknown, but if we can transform the 
sampled distribution to a known distribution, we can then make some probability 
statements. 

 Beyond this, we simply want to determine what is likely under the null hypothesis.  If 
we hypothesize a mean of 0 and take a sample of mean that is actually close to 0, 
then the null hypothesis is probably true.  If, on the other hand, the calculated sample 
mean is not close to 0, and if the difference big enough that it is not likely to have 
occurred due to sampling variation, then the alternate hypothesis is the more likely 
choice.  

Reasonable limits – recall that we needed to define this  

 a set of limits of the critical region determined by the significance level () and by the 
alternative hypothesis (e.g. was it two tailed, or one tailed, and if one tailed, to which 
side).  The value of  is what specifies what we feel would be unlikely under the null 
hypothesis.  
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SUMMARY OF THE 7 STEPS OF HYPOTHESIS TESTING 

I.  Establish a null hypothesis, H0: 

II. Determine an appropriate alternative hypothesis to the null, H1: 

III. Consider the assumptions  

IV. Determine a value for  and find the critical limits and a critical region for the chosen 
statistic.  

V. Obtain a sample of new data to test the hypothesis, and compute the appropriate test statistic 
from the sample.  

VI. Using the critical region and the test statistic (e.g. Z), compare the values and make a 
decision to reject the H0 or to fail to reject the H0.  

VII. Draw your conclusions from the test of hypothesis.  

Example of a Test of Hypothesis 

Extensive measurements done in eastern Tennessee have shown that the average 20-year-old 
White Oak produces an average of 12 Kg of acorns with a variance of 4 Kg2. Five White 
Oaks in Georgia produced a mean of 14 Kg.  Assuming that the variance is the same, test 
the hypothesis that the production is the same in Tennessee and Georgia.  

1) 0 0 0 0H :    or H :     0       (where 0 = 12 Kg, the known value for Tennessee.  

2) 1 0 1 0H :    or H :     0      .   We might be tempted to test the hypothesis, 

1 0H :  >   , since the Georgia oaks had a mean of 14 Kg.  However, remember that 

this is supposed to be a new data set to test the hypothesis and we would not have 
known this in advance.  

3) Assume the sample of Oaks is random (independent) and normally distributed.  We also 
have a known variance from Tennessee of 4 Kg2.  

4) Determine a value of  and obtain the critical limits for a critical region for the test 
statistic using our knowledge of H1 and .  

We will somewhat arbitrarily choose a 
value of  = 0.05. This is a commonly 
used and accepted value.  

The H1 indicates that we are doing a 2 
tailed test.  To keep  at 0.05, place 
half the value of a in each tail (0.0250 
per tail).  This corresponds to critical Z 
values of ±1.96  

The Critical Region: red areas in the tails are areas of rejection. 

5) Obtain a  new data set to test the hypothesis, and compute the appropriate test statistic 
from the sample (Y for testing differences in the means).  

The results for our sample were Y  = 14, and n = 5.  

-1.96 +1.96

0 
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6) Calculate 
       0 14 12 2 5 2

5 2.236.
24 5 2 5

i
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 

     
 

This value of the test statistic is greater than the limit for the upper critical region 
(±1.96), so it falls in the region of rejection.   This would be interpreted to indicate 
that it is unlikely that a value this large would arise by random chance alone if the 
null hypothesis were true.  

7) Conclusion: Reject the null hypothesis and conclude that the two areas differ in terms of 
acorn production.  

We can also go one step further. Since the production levels are different we can also 
conclude that production is greater in Georgia since it had a greater value for the 
mean production.  

One-tailed tests 

Suppose our problem had been a little different, and that we had believed from the beginning 
that Georgia had a higher rate of production.  Something we believed BEFORE we started 
the study (a priori).  We might then want to test for only this alternative, i.e. 

1 0 1 0H :  >  or H :     0     , where 0 = 12 Kg (the Tennessee value).  

Now, the test is altered because we will have a different critical value.  We still want an  = 
0.05, but we would put all 5% chance of error 
in the upper tail!  

Note that this makes it “easier” to show 
significance, because we only need meet the 
1.645 criteria instead of the 1.96 criteria. 

However, it implies that we have some additional 
knowledge and have no interest in the lower 
tail.  What if the calculated value was well into 
in the lower tail?  Presumably this would be a 
spurious occurrence and not of interest, because 
we “know” it can't happen.  

In fact, if our critical value was 1.645 in the upper tail, and we found the Georgia value to be 
less than Tennessee, no additional calculations would be needed because the calculated Z 
value would be negative and could not be in the upper tail.   In other words, if our 
hypothesized value (0) is greater than out observed value (Y ), then the calculation 

 0i

Y

Y
Z
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  would be negative and could not be in the upper tail that was hypothesized.  
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Additional notes and terminology on hypothesis testing  

Recall that a key aspect of a test of hypothesis is that we must have a test statistic with a known 
distribution.  For our present discussion we are using the Z distribution.  

Given 0 0H :      and 1 0H :      and  = 0.05  

1) If H0 is true then (1–)100% of the samples will yield a Z test statistic that will fall in the 
region of “acceptance”.  That is, for  = 0.05, then (1–)100% = 95%.  This is sometimes 
referred to as the confidence level.  

2) For a two-tailed test, half of the possible samples will have a Z test statistic score in the 
upper critical region [(2)100%], and half of the samples will have a score in the lower 
critical region [(2)100%].  For  = 0.05, then (2)100% = 2.5%.  

3) Since 1 0H :       (implying we do not know “a priori” if the hypothesized value might be 

too large or too small), the probability statement then becomes. 

P(|Z|  ≥  Z0)  =  = 0.05 (the absolute value sign indicates Z may be positive or negative) 

2P(Z  ≥  Z0)  =  = 0.05 

P(Z  ≥  Z0)  =  /2 = 0.025 

so Z0 = 1.96    from the Z tables 

4) If the calculated Z test statistic is between –1.96 and +1.96, we cannot reject the null 
hypothesis ( 0 0H :     ).  This means that the observed statistic is consistent with the 

hypothesized value, BUT we can never actually PROVE that H0 is true.  It is relatively easy 
to prove that things are different, but almost impossible to prove that two things are 
identical.  

So we resort to jargon; we say that ...  

 there is no “statistically significant difference”   

 there is no “significant difference”    

 that “the data is consistent with the null hypothesis”  

 that we “fail to reject the null hypothesis”. 

These statements are better (more correct) than stating that we actually “ACCEPT” the null 
hypothesis or that the null hypothesis is TRUE.   

5) For a two tailed test, if the calculated |Z| is greater than, or equal to, the critical value of the 
test statistic (e.g. Z = 1.96), then reject the H0, and conclude that the null hypothesis is 
correct.  For one tailed tests, if Z > 1.96 reject for the hypothesis 1 0H :  >    and if or Z < –

1.96 conclude that 1 0H :  <   .  

6) The size of the critical region is determined by , the level of significance.  

Note that when we reject the null hypothesis, there is a chance that we are in error, but that 
we know the probability of making that error.  It is .  This is because we can set the 
level of fallibility in our conclusions for this type of error.  

7) When we have a one tailed alternative, say 1 0H :  >   , versus the null hypothesis 

0 0H :   , what happens to the cases that may be much less than the hypothesized 
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values?  Since we have a one tailed test we must know that such cases are impossible, or 
are simply not of interest no matter how small they must be.  In this case some 
investigators prefer notation where the other extreme is included in the null hypothesis.  

0 0 1 0H :    versus H :          

0 0 1 0H :    versus H :          

 This is acceptable, but the statistical development of a test of hypothesis actually considers 
only the equality in the null hypothesis and doesn’t really consider these cases.  

Final notes on the one and two tailed alternatives 

1) The two tailed test is called the “non directional 
alternative”. 

0 0 0 0H :    or H :     0        

1 0 1 0H :    or H :     0       

 This means that we will accept either 

1 0 1 0H :  <  or H :  >      as fulfillment of the alternate hypothesis.  Since either case is to 

be accepted we state our probability with an absolute value, P(|Z|  ≥  Z0) =  = 0.05 and for 
a 5% chance of error, we divide the 5% into equal parts (usually) and put half in each tail. 

2) The one tailed test is called the “directional alternative”.  

0 0 0 0H :    or H :     0       and  

1 0 1 0H :  <  or H :     0      or  

1 0 1 0H :  >  or H :     0       

 this indicates that we will accept only one 
of the two options, 1 0H :  <    or 

1 0H :  >   as fulfillment of the alternate hypothesis.  Since only one case is to be accepted, 

we state our probability as either P(Z  ≥  Z0) =  =  0.05 or P(Z ≤ Z0) =  = 0.05, and for a 
5% chance of error, we put all 5% into the tail of interest.  

Why  = 0.05, and not 0.04 or 0.09?  

No particular reason.  The value is not special, but has become something of a convention 
or traditional standard.  This value represents a one chance in 20 of error.  It is 
generally accepted as a reasonable chance of error, and is usually acceptable to 
referees, editors and journals.  However, if you want to use another value, and have 
some good reason for doing so, this should be possible.  

The value of 0.05 has traditionally been termed the level at which we have “statistically 
significant” results.  A value of 0.01 is then considered a “highly significant” result.  

P values in tests of hypothesis  

Probability value or P values, like those we have discussed previously, just represent some area 
under a curve.  However, in the context of hypothesis testing they indicate that area under 
the curve that represents a value equal or larger than some observed value of a test statistic.   

0 
 

0
 
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Recent literature had tended to giving just the actual “P value”, and letting the reader decide if 
it is “significant”.   The P-value is just the area in the tail above the calculated Z value.  For 
example, with our Oak tree example, the calculated Z value was 2.236.  This was larger 
than our critical value of 1.96. so the “tail” would be smaller than 0.025.  

So, how unusual is a value of 2.236?   
Actually, the probability of a randomly 
chosen value exceeding this value is 
0.0127 in one tail.  For a two tailed tests 
we would express this probability as 
2(0.0127) = 0.0254 since we would 
reject for either – 2.236 or +2.236.  

The P-value is then: P = 0.0254.  For most tests that we do, SAS will give this value.  

If smaller than the desired , calculated test statistic value would be in the tail and would be 
rejected.  If larger than the desired , test statistic value would not be in the tail and would 
be not be rejected.  Most tests in SAS are two–tailed, though a few are one-tailed. 

Another Example 

The mean for high school seniors on a nationally standardized reading test is 170 points with a 
variance of 400.  The principal of a small rural high school hypothesizes that the 9 seniors in 
his school will score better than the national average.  Test his hypothesis (data given later).  

I.  0 0 0 0H :    or H :     0        

II. 1 0 1 0H :  >  or H :     0       

III. Assume that the scores are (1) normally and (2) independently distributed with a (3) known 
variance of 2 = 400.  (i.e. the distribution is NID(170, 400)).  

IV. Let the probability of Type I error equal 5%.  (i.e.  = 0.05)  

V.  Find the critical limits given that we want a one tailed test against the upper tail with  = 0.05.  
The Z value which will leave 5% in the upper 
tail is 1.645.  

VI. Gather new data to test the hypothesis.  The 
test results for the 9 students were: 164, 175, 
186, 173, 191, 187, 189, 176 and 179.  The 
summary statistics for this group are Y  = 180 
and S2 = 634.  However, we know the true 
national variance (2 = 400) for the test and can use this in a Z test.  

 The condition of “known variance” is really important to using a Z test, and should be added 
as a third assumption. 

The test calculations are 0

2

180 170 10
1.5

6.6667400
9

Y
Z

n





 
     

VII. This value does not reach the critical value of 1.645, so we cannot conclude that these 9 
seniors scored significantly higher than the national average.  Apparently, it is not that 
unusual, at the 5% level, for any subgroup of 9 individuals to score 10 points above the 

-4 -3 -2 -1 0 1 2 3 4

Area above
observed 
value

-4 -3 -2 -1 0 1 2 3 4
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national mean.  However, the P value for the observed Z score is P = 0.0668, so it is not very 
common either.  

Are we convinced that these 9 students are not above average?  This would be our conclusion if 
the P value had reached 0.05, but it reached only 0.0668.  Close!  The principal may well 
claim that this was significant.  As scientists we may decide it is just too close to call, and 
“reserve judgment” pending more data.  

Summary 

Logic: We need a known probability distribution and we need to determine what is likely for our 
known distribution under the null hypothesis.  

Any conditions needed for this to work out are specified in the assumptions.  

Both one and two-tailed alternative hypotheses are possible.  

Review the 7 Steps of Hypothesis testing 

I.  Determine the H0  

II. Determine the H1  

III. Consider the assumptions  

IV. Determine a value for  and obtain a critical region for a test statistic (e.g.  Z), from your 
knowledge of alpha () and the H1.  

V. Obtain a sample of new data to test the Hypothesis.  Compute the appropriate statistic from 
a sample (e.g. Y ) and calculate the value of the TEST STATISTIC (Z) 

VI. Compare the calculated value of the test statistic to the CRITICAL VALUES.  Make your 
decision to either reject the H0 or to FAIL to Reject the H0.  

VII. Draw you conclusions from the test of Hypothesis and interpret your results.  

The 5 steps of Hypothesis Testing according to Freund & Wilson. 

1) Establish H0 , H1 and a value for .  

2) Determine the test statistic and a region for rejection 

3) Draw a sample, calculate the test statistic 

4) Compare the test statistic to the critical limits and make a decision to reject or fail to reject.  

5) Interpret the results 
 

Hypothesis testing Concepts 

The logic of test of hypothesis is based on the chosen probability of error,  (or significance level) 
for the test statistic (Z) which determines the range of what would be expected due to chance 
alone assuming H0 is true.  

Significance level notation, commonly used levels and terminology 

“Statistically significant”  = 0.05 

“Highly significant”    = 0.01 
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Errors!  

When we do a test of hypothesis is it possible that we are wrong?  

Yes, unfortunately, it is always possible that we are wrong.  Furthermore, there are two types of 
error that we could make!  

Types of error 

 
Data indicates: 

H0 is true 
Data indicates: 

H0 is false 

True result: 
H0 is true 

NO ERROR 
Type I Error:  

Reject TRUE H0 

True result: 
H0 is false 

Type II Error:  
Fail to Reject FALSE H0

NO ERROR 

 

Type I Error:  Type I error is the rejection of a true null hypothesis.  

This type of error is also called  (alpha) error. This is the value that we choose as the 
“level of significance”, so we actually set the probability of making this type of error.  

The probability of a type I error =   

Type II Error: Type II error is the failure to reject of a null hypothesis that is false. This type 
of error is also called  (beta) error.  

We do not set this value, but we call the probability of a type II error = .  

Furthermore, in practice we will never know this value.  This is another reason we cannot 
“accept” the null hypothesis, because it is possible that we are wrong and we cannot 
state the probability of this type of error.  

The good news, it is only possible to make one error at a time. 

If you reject H0, then you may have made a type I error, but you cannot have made a type II 
error.   

If you fail to reject H0, then you may have made a type II error, but you cannot have made a 
type I error.  

The probability of Type II Error 

This is a probability that we will not know.  This probability is called .  However, we can do 
several things to make the error smaller, so this will be our objective.  

First, let's look at how these errors occur.  

Examine the hypothesized distribution (below) that we believe to have a mean of 18.  
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10 12 14 16 18 20 22 24 26
-4 -3 -2 -1 0 1 2 3 4   We are going to do a 2 tailed test with an  value of 0.05.  

Our critical limits will be ±1.96.  

10 12 14 16 18 20 22 24 26
-4 -3 -2 -1 0 1 2 3 4   So we will reject any test statistic over 1.96 (or under –1.96).  

But let’s suppose the null hypothesis is false!!!  Let’s suppose that the alternate 
hypothesis is true.  Then the hypothesized distribution is not real, there is another “real” 
distribution that we are sampling from.  What might it look like? 

10 12 14 16 18 20 22 24 26 27 28    Here is the real distribution.  It actually has a mean of 
22, but we don't know that.  If we did, we would not have hypothesized a mean of 18!  

10 12 14 16 18 20 22 24 26 27 2810 12 14 16 18 20 22 24 26

-4 -3 -2 -1 0 1 2 3 4

Critical value

So where on the real distribution is our critical 
limit.  This is the key question.   

10 12 14 16 18 20 22 24 26
-4 -3 -2 -1 0 1 2 3 4
10 12 14 16 18 20 22 24 26 27 28

    Note that with the Z transformations each change of 
1 unit of Z corresponds to a change of 2 on the original Y scale. This means that on the 
original scale  = 2.  

10 12 14 16 18 20 22 24 26

-4 -3 -2 -1 0 1 2 3 4

Critical value

10 12 14 16 18 20 22 24 26 27 28

  Now we draw our sample from the real 
distribution.  If our result says reject the H0, we make no error. 
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10 12 14 16 18 20 22 24 26

-4 -3 -2 -1 0 1 2 3 4

Critical value

10 12 14 16 18 20 22 24 26 27 28

  But if our result causes us to fail to reject, we err.  

Critical value

10 12 14 16 18 20 22 24 26 27 28   And in this case it appears we have pretty close 
to a 50-50 chance of going either way.  

10 12 14 16 18 20 22 24 26 27 28   So we take our sample and do our test.  Will we err?  
Maybe we will, and maybe we won’t.  Our sample could come from anywhere in this 
“real” distribution.  If our sample happens to fall in the lower red area (below about 22), 
we would not reject H0, and we would err.  But if our sample happens to fall in the upper 
yellow area (above about 22), we will reject H0.  In this case there is no error, we draw 
the correct conclusion. 

The Probability of Type II error or  error 

For  = 0.05, our critical limit, in terms of Z, would be 1.96.  

The critical limit translates to a value on the original scale of 
18 1.96(2) 18 3.92i iY Z       .  The lower bound is 14.08 and the upper bound is 

21.92.  The lower bound is so far down on the real distribution that the probability of getting a 
sample that falls there is near zero.  The upper bound is the one that falls in the middle of the 
“real” distribution.  

In this fictitious case we know that the true mean is 22.  Normally we wouldn't know the true 
mean. Since we know the true mean in this case, we can calculate the probability of drawing a 
sample above and below the critical limit (21.92 on the Y scale, –0.04 on the Z scale of the 
real distribution).  The probability of falling below this value, and of making a type II error, is 
0.484, or about 48.4%.  This is the probability we call beta ().   

The probability of falling above this value, and of NOT making a type II error, is 0.516, or 51.6%.  
So in this case we can calculate , the probability of a Type II error.  In practice we cannot 
usually know these probabilities because we never know the real value of the mean.  

We define a new term POWER, this is the probability of NOT making a type II error (1 – ).  
This was 0.516 in our example.  
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Power and Type II Error 

Since we don't actually know the value of the true mean (or we wouldn't be hypothesizing 
something else), we cannot know in practice the type II error rate ().  However, it is affected 
by a number of things, and we can know about these.  

1) Power is affected by the distance between the hypothesized mean (0) and true 
mean ().  

 

 

The Power Curve 

Difference between true and hypothesized mean
0



1

Power

 

2) Power is affected by the value chosen for Type I error ().  
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3) Power is affected by the variability or spread of the distribution.  

10 12 14 16 18 20 22 24 26 27 28

10 12 14 16 18 20 22 24 26 27 28

 

Influencing the power of a test of hypothesis  

The capability of the test to reject H0 when it is false is called Power = 1 – .  Anything done to 
enhance this value will improve your ability to test for differences among populations.  Which 
of the 3 factors influencing power can you control?   

For testing means you may be able to control sample size (n).  This reduces the variability and 
increases power. 

You probably cannot influence the difference between  and 0. 

You can choose any value of .  However, this cannot be too small or Type II error becomes 
more likely.  Too large and Type I error becomes likely.  

Methods of increasing the power of a test   

How would we use our knowledge of factors affecting power to increase the power of our tests 
of hypothesis?  

Increase the significance level (e.g. from  = 0.01 to  = 0.05) 

If H0 is true we would increase , the probability of a Type I error.  

If H0 is false then we decrease , the probability of a Type II error, and by decreasing , 
we are increasing the POWER of test.  

For a given , the POWER can be increased by ....  

Increasing n, so 
2

Y n n
     decreases, and the amount of overlap between the 

real and hypothesized distributions decreases.  

For example, let’s suppose we are conducting a test of the hypothesis H0:  = 0 against 
the alternative H1:  ≠  0.  We believe 0 = 50 and we set  = 0.05.  We also know 
that 2 = 100 and that n = 25.  

From this information we can calculate 10 25Y n
    .  The critical region in 

terms of Z is then P(|Z| ≥ Z0) = 0.05 and Z0 = 1.96, and the critical value on the 
original scale Y variable scale is Yi =  + Zi  = 50 + 1.96(2) = 53.92.  

If the REAL population mean is 54, calculate P(Y  ≥ 53.92), given that the TRUE mean 
is 54 we calculate the Z value as Z = (53.92 – 54)/2 = –0.08 / 2 = –0.04.  
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The probability of a TYPE II error () is the probability of not drawing a sample that 
falls above this value and not rejecting the false null hypothesis.  The value is  = 
P(Z ≤ –0.04) = 0.4840.  

So for an experiment with n = 25, the power is 1 –   = 1 – 0.4840 = 0.516.  

But suppose we had a larger sample, say n = 100.  Now 10 110Y n
    .  The critical 

region stays at Z0 = 1.96, but on the original scale this is now Yi =  + Zi  = 50 + 
1.96(1) = 51.96.   For a true mean of 54 we now get Z = (51.96–54)/1 = –2.04/1 = –
2.04.  

The value of   = is P(Z ≤ –2.04) = 0.0207, and the power for this test is 1 –  = 0.9793.  

The bottom line, 

With n = 25, the power is 0.5160.  

With n = 100, the power is 0.9793.  

This is why statisticians recommend larger sample sizes so strongly.  We may never really 
know what power is, but we know how to increase it and reduce the probability of 
TYPE II error.  

Summary 

Hypothesis testing is prone to two types of errors, one we control () and one we do not ().  

Type I error is the REJECTION of a true null hypothesis. 

Type II error is the FAILURE TO REJECT a null hypothesis that is false.  

The “Power” of a test is 1 –   

Not only do we not control TYPE II error, we probably do not even know its value.  However, we 
can hopefully reduce this error, and increase power, by  

Controlling the distance between  and 0 (not really likely)  

Selecting a value of  that is not too small (0.05 and 0.01 are the usual values)  

Getting a larger sample size (n), this is the factor that is usually under the most control of the 
investigator.  

 

The t-test of hypotheses  

The t distribution is used the same as Z distribution, except it is used where sigma () ,is unknown 
(or where Y  is used instead of  to calculate deviations).  The t distribution is a bell shaped 
curve, like the Z distribution, but not the same.  The Z distribution is normal because it has a 
normal distribution in the numerator (Yi) and all other terms in the transformation are 
constant. The t distribution has a normal distribution in the numerator but the sample variance 
in the denominator is another statistic with a chi square distribution.  
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  ; the t distribution applied to individual observations 


