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Reading the Z tables 

Values on the left side and top of the Z table give the value of Z, For example, to find Z=0.11,  

read the integer portion and first decimal part (0.1) along the left side and,  

find the second decimal (0.01) along the top  

The intersection of these gives the probability of a greater value of Z, in this case P(Z ≥ 
+0.11) = 0.4562.   

Note that the value of Z=0.00 has a probability of 0.5, so half of the distribution is above 
this value (and half below)  

Working with Z tables  

What did we just do?   

We found the area under the curve above a value of 
Z=0.11.  The values in the available tables will 
always be giving the r.c.f. of the upper area of the curve.  

What if we want to work with the lower half of the curve?  

Due to symmetry in the distribution, the probability of a 
randomly selected value falling in the negative area 
to the left is the same as the corresponding positive 
area, so P(Z ≥ +0.11) = P(Z ≤ – 0.11)  

Some things we know from previous discussions of the 
empirical rule.   

P(Z ≥ 0) = P(Z ≤ 0) = 0.5.   

The probability that a randomly selected Z falls between the limits – 1 and  + 1 is 
about 68%, and half of the remaining fall in each of the tails (about 16%).  Since  = 1 
for the standard normal, we should have about 16% above +1, and 16% below –1.  
Looking this up in the table we see P(Z ≥ +1) = 0.1587.  Due to symmetry P(Z ≤ –1) is 
also 0.1587.  

The probability that a randomly selected Z falls between the limits – 1.96 and  + 
1.96  is 95%, and half of the remaining fall in each of the tails (about 2.5%). Since  
= 1 for the standard normal, we should have about 2.5% above 1.96, and 2.5% below 
–1.96.  Looking this up in the table we see P(Z ≥ +1.96) = 0.0250, and P(Z ≤ –1.96) 
would be the same.  

A memorable value, 1.96!   

The probability that a randomly selected Z falls between the limits –2.576 and 
+2.576 is about 99%, and half of the remaining fall in each of the tails (about 
0.5%).  Since  = 1 for the standard normal, we should have about 0.5% above 2.576, 
and 0.5% below –2.576.  Attempting to look this up in the table we see that the value 
2.576 does not occur exactly in the tables, but  

P(Z ≥ +2.57) = P(Z ≤ –2.57) = 0.0051 and P(Z ≥ +2.58) = P(Z ≤  –2.58) = 0.0049   

So the true value is somewhere between 2.57 and 2.58, it turns out to be exactly   

P(Z ≥ +2.576) = P(Z ≤ –2.576) = 0.005  
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“In between” values would normally be determined by interpolation.  Exact values can be 
obtained from various software packages, including SAS and EXCEL.  

Note: On an exam, if a value does not occur exactly, I will accept either of the two limits 
on either side of the correct value, or anything in between.  

In the real world you can get “exact” values from EXCEL.  In the even more real world, 
how much precision, or how many decimal places, do you really need to make this 
type of decision?  All my tables were created in EXCEL   

A few more examples of working with Z tables 

Find P(Z ≥ +1.35).   This is an area in the upper half of the distribution (since Z is positive) so 
we can read it directly from the Z tables.  P(Z ≥ +1.35) = 0.0885  

Find P(Z ≤ –2.22).  This is an area from the lower half of the table, but due to symmetry  
P(Z ≤ –2.22) = P(Z ≥ +2.22), so we can use the upper half of the table that we have 
available.  P(Z ≤ –2.22) = 0.0132  

What about problems that do not ask for the area in the 
upper or lower tail?  For example, P(Z ≤ 1.30).  
This value is in the upper half of the table, but the 
probability requested is for randomly chosen Z 
values less than or equal, this will go into the 
lower half of the distribution!   

To solve this problem you must recall that the total 
area under the curve adds to 1.  To find P(Z ≤ 1.30), 
we first find P(Z ≥ +1.30) and subtract from 1.   
P(Z ≤ 1.30) = 1 – P(Z ≥ +1.30) = 1 – 0.0968 = 
0.9032.  

Even trickier Z distribution problems 

Note that the value of Z = 0.00 has a probability of 0.5, so half of the distribution is above this 
value (and half below).   

Find P(Z ≥ –0.65). 

Now we are looking for a value greater than or equal to 
a value on the negative side of the distribution.  
From our tables we first find  
P(Z ≥ 0.65) = 0.2578 = P(Z ≤ –0.65) due to 
symmetry, and so 1–P(Z ≤ –0.65) =  
1–0.2578 = 0.7422 

It is strongly advisable to sketch the problem, and to see if the answer makes sense.  In this case 
we can see from the sketch that the desired area is over half of the total area, so the answer 
should be greater than 0.5, and of course it was (P(Z) ≥ –0.65) = 0.7422).   

A few extra examples 
1) P(Z ≥ 3.50) = ?  Read directly from the table  
2) P(Z ≤ –2.00) = ?  Read from the table, but for the upper (positive) end  
3) P(Z ≥ 0.00) = ?  Read directly from the table  
4) P(Z ≤ 1.64) = P(Z ≥ –1.64) = ? This is not in the table.  Use 1–P(Z ≥ 1.64)  
5) P(Z ≤ 1.96) = P(Z ≥ –1.96) = ? This is not in the table.  Use 1–P(Z ≥ 1.96)  
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Two-tailed problems and “area in the middle” problems  

A common type of problem is to determine the area between 
two limits, or to determine the area in the tails outside some 
specific limits.  

Probability expressions for these problems will take the 
form P(Z1 ≤ Z ≤ Z2) = ?  

If the problem is symmetric, then –Z1 = Z2, call the limit 
Z0 and we can rewrite P(–Z0 ≤ Z ≤ Z0) as P(|Z| ≤ Z0).  
Probability expressions for areas in the tails will take 
the form P(|Z| ≥ Z0) if the problem is symmetric.  If 
not, we can write this as two expressions, P(Z ≤ Z1) OR P(Z ≥ Z2).  

It is also possible that problems involving sections may not be symmetric, and may occur 
entirely in the positive tail, or negative tail.  

Some Examples 

P(|Z| ≥ Z0), where Z0 = 1.96.  Since we are taking the 
absolute value of a randomly chosen Z value in either 
tail, that value may be either positive or negative and 
its absolute value may be greater than or equal to 1.96.  

P(|Z| ≥ Z0), where Z0 = 1.96.  

P(|Z| ≥ Z0) = P(Z ≤ –Z0) + P(Z ≥ Z0), and since it is symmetric 

P(|Z| ≥ Z0) = 2*P(Z ≥ Z0) = 2(0.0250) = 0.050  

P(|Z| ≤ Z0), where Z0 = 2.576.  This problem is similar to 
the previous, but it describes the area in the middle, 
between two limits.  

P(|Z| ≤ Z0) = 1 – P(|Z| ≥ Z0) = 1–2*P(Z ≥ Z0) = 1 – 
2(0.0050) = 0.99  

An asymmetric case 

P(–1.96 ≤ Z ≤ 2.576) = ?  This is the area in the 
middle, the total minus the two tails.  We already 
know these tails.  

P(–1.96 ≤ Z ≤ 2.576) = 1 – P(Z ≥ 1.96) – P(Z ≥ 
2.576) = 1 – 0.0250 – 0.0050 = 0.97  

Working the Z tables, backward & forward  

We have seen how to find a probability from a value of Z0. 
Now we need to be able to find a value of Z0 when a 
probability is known.  Basically, we find the value of 
the probability in the body of our Z table, and 
determine the corresponding value of Z0. 

P(Z ≤ Z0) = 0.1587, find the value of Z0  

This probability is a value less than 0.5, so it is a tail and can be solved directly from our 
tables.  We only need to find 0.1587 in the table and determine the corresponding value 
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of Z0.  The value in the table occurs in the row corresponding to “1.0” and the column 
corresponding to “0.00”.  Finally note that the randomly chosen Z was to be less than or 
equal to Z0, so we are in the lower tail.  Z0 = –1.00 

P(Z ≤ Z0) = 0.8413, find the value of Z0  

This probability is a value greater than 0.5.  To read it 
from our tables we must determine the corresponding 
tail. The tail would be given by 1–0.8413 = 0.1587. 
So this is the same as the value we just looked up, it 
occurs in the row corresponding to “1.0” and the 
column corresponding to “0.00”. Finally, note that the randomly chosen Z was to be 
less than or equal to Z0, but since the probability was larger than 0.5 we are in the 
upper tail.   Z0 = +1.00  

P(1 ≤ Z ≤ Z0) = 0.1, find the value of Z0  

First note that the lower limit is 1.00, so we are working 
with the upper tail of the Z distribution.  We can find 
the probability that Z is ≤ 1 as 1 – P(Z ≥ 1) = 1 – 
0.1587 = 0.8413.  The area of interest is stated to 
have an area of 0.1, so the upper tail would be what 
remains in the upper tail, 1 – 0.8413 – 0.1 = 0.0587.  We find 0.0587 in our Z tables 
and note that it is between 1.56 and 1.57.   I would 
accept either answer.  The actual value, determined 
by the EXCEL “NORMDIST” function is Z0 = 
1.565781531.   

P(|Z|  ≥  Z0) = 0.05, find the value of Z0  

Note that the random value of Z is greater than Z0, so we 
are examining an area in the tails, where the random 
Z may be either positive or negative and its absolute 
value will exceed the value of Z0.  Recall that our 
tables give only one tail, and this particular case has 
0.05 in two tails, so we want to determine the value of Z0 for only one of those tails to 
match our tables.  Each tail would have half of the 
0.05 since it is a symmetric problem.  So the area in 
the tail is 0.05/2 = 0.025.  We can examine the tables 
and determine that for a probability of 0.025 the Z 
value is 1.96, so Z0 = 1.96. Some people like to write 
Z0 = ±1.96, but this isn't really necessary for this case.  

P(|Z| ≤ Z0) = 0.99, find the value of Z0   

Note that the random value of Z is less than Z0, so we are examining an area in the middle 
of the distribution.  Again, the randomly chosen Z 
may be either positive or negative.    Since our tables 
give the tails of the distribution we need to 
determine the area in the tails.  Since 0.99 occurs in 
the middle, the tails must have an area of 1 – 0.99 = 
0.01.  Half of this is in each tail, so the area in one 
tail would be 0.01/2 = 0.005.  Given that the area in the tail is 0.005, the Z value is 
2.576 (actually between 2.57 and 2.58; this is a value we have seen previously).  
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The Z transformation of any normal distribution  

Most practical applications of the Z distribution will require that we take a real distribution 
{N(,2)} and convert it to a Z distribution {N(0,1)}, calculate some probability statement, 
and then convert the results back to the original distribution.  

So we work with two distributions   

Y ~ N(,2)  

Z ~ N(0,1)  

In order to convert the observed Y distribution to the more workable Z distribution we need to 
transform the distribution.  We use the Z transformation.   

Zi = (Yi – ) /   

For example, suppose we have a distribution where Y ~ 
N(20,16) and we wish to determine P(Y ≤ 24).   
We convert the probability statement for the 
original distribution into a Z distribution using our 
transformation.  

Transformation: Zi = (Yi – ) /  for N(20, 16)  

P(Y ≤ 24) =    24 20
4

iY
P




   
 

  

= P(Z ≤ 1) 

P(Z ≤ 1) = 1 – P(Z ≥ 1)=1 – 0.1587 = 0.8413 

So, P(Y ≤ 24) = 0.8413  

Another example 

Using the same distribution Y ~ N(20,16) where we 
wish to determine P(Y ≥ 22).  

P(Y ≥ 22) =    22 20
4

iY
P




   
 

= P(Z ≥ 0.5)  

From the table we determine that P(Z ≥ 0.5) = 0.3085 

Another type of example  

Find Y0, where P(Y ≤ Y0) = 0.1515 for the same 
distribution, Y~N(20, 16).  Again, using our 
transformation,  

P(Y ≤ Y0) = 0.1515 =    0iY Y
P

 
 

   
 

= 

P(Z ≤ Z0)  =  0.1515 

Notice that the sign is ≤ and the probability small (less than 0.5), so we are in the lower 
half of the distribution.  From the table the Z value is 1.03, so Z0 = –1.03.  So we 
know that Z0 = –1.03, an area in the lower half of the distribution, but we don't know 
the value of Y0 yet and our original problem was to find P(Y ≤ Y0) = 0.1515.  So we 
need to transform back to the Y scale.  This back-transformation is a reversal of the Z 
transformation.  

20 24

20 24 Original scale
0 1 Z distribution scale

0.8413

20 22
0 0.5

0.3085

Z=1.03
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Transformation: Zi = (Yi – ) /   

To transformation back calculate:  

Yi =  + Z = 20 + (–1.03)4 = 20 + (–4.12) =  
 20 – 4.12 = 15.88.  

The interpretation of this problem is that there is a 
probability of 0.1515 of randomly drawing a 
value from this distribution and getting a value 
that is less than 15.88.  

One last example 

Determine within what limits 50% of the distribution lies.  We will use the same 
hypothetical distribution Y~N(20,16).  We will assume that the objective here is to 
form symmetric limits as shown below. Otherwise, the problem has no answer.  After 
all, half of the distribution (50%) lies above Z0 = 0, so the limits could be (0, ∞).  Half 
the distribution also lies below Z0 = 0, so the limits could also be (–∞, 0).  And there 
are an infinite number of other such limits in between.  So, assuming symmetry, the 
problem becomes to determine the values of Y0 such that half of the distribution lies 
between –Z1 and +Z2, where Z1 = Y2 due to 
symmetry and we will refer to this value as Y0.  
Once we determine the values of Z that meet the 
probability limits we will transform the upper 
and lower value back to the Y distribution limits. 

Determine: 

P(|Z| ≤ Z0) = 0.5  

Since our tables give area in the tails, we need to change this from P(|Z| ≤ Z0) = 0.5 to 
1–2P(Z ≥ Z0) = 0.5 and find P(Z ≥ Z0) = (1–0.5)/2 or P(Z ≥ Z0) = 0.25.   

From our table: Z0 = 0.675 

Transforming Z0 = 0.675 back to the Y scale gives, 

  –Z0, Y1 = 20 – 0.675(4) = 20 – 2.7 = 17.3  

 Z0, Y2 = 20 + 0.675(4) = 20 + 2.7 = 22.7  

The final probability statement is best given in 
the form, P(17.3 ≤ Y ≤ 22.7) = 0.50 

Summary on use of Z tables  

Values of the relative cumulative frequency are given in 
the table.  

the table is one – sided  

the value given in the table is for the upper tail of the distribution  

The total area under the curve is 1.0  

The distribution is symmetrical.  

e.g.  for Z = –1 r.c.f. = 0.1587 (in the left tail)  

  for Z = 1 r.c.f. = 0.1587  (in the right tail) 

Y=15.88

-Z0 Z0

0.50
0.250.25

0.50
0.250.25

-Z0=-0.675 Z0=0.675
Y1=17.3 Y2=22.7
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We can transform from any normal distribution to the Z distribution by using the 
transformation Zi = (Yi – ) /   

We can transform back from the Z distribution to any normal distribution by using the 
transformation Yi =  + Z  

Memorable values of Z (for 2 sided evaluations) 
± 1  = 0.68  
 ± 1.645  = 0.90  
 ± 1.96 = 0.95  
 ± 2.576  = 0.99  

A tip.  Some tables give the one tailed probabilities at the top, some the two tailed probabilities.  
Some are cumulative from the lower end, some cumulative from the zero value (middle) 
up, and some give the cumulative area in the tails (like mine).    
If you know that 1.96 leaves 2.5% in one tail and 5% in two tails you can look for this 
value and figure out what kind of tables you have.  

Distribution of sample means 

Sample means are the basis for testing hypotheses about , the most common types of hypothesis 
tests.   Before discussing hypothesis tests we will need some additional information about the 
nature of sample means.  

Imagine we are drawing samples from a population with the following characteristics.  

Population size  =  N 

Mean  =    

Variance  =   2  

The individual observations from this parent population are: 

Yi = Y1, Y2, Y3, ... , YN  

The set of samples of size n from the parent population form a derived population 

There are Nn possible samples of size n that can be drawn from a population of size N 
(sampling with replacement, which simulates a very large population).  

For each sample we calculate a mean 1

n

ik
i

k

Y
Y n




, where k = 1, 2, 3, ... , Nn  

The Derived Population of means of samples of size n  

The sample size = n  

Population size  =  Nn  

Mean  =   Y  

Variance  = 2
Y   

Derived population values  1 2 3 4, , ,  ..., , nk N
Y Y Y Y Y Y  
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Mean of the derived population 1

nN

k
k

nY

Y

N
 


 where k = 1, 2, 3, ... , Nn   

Variance of the derived population 

2

2 1

( )
nN

k
k

nY

Y

N


 





 where k = 1, 2, 3, ... , Nn 

Example of a Derived Population 

Parent Population: Yi  =  0, 1, 2, 3 

where  n = 2   and  Nn  = 42 = 16 

Draw all possible samples of size 2 from the Parent 
Population (sampling with replacement, so that values 
will occur more than once), and calculate a mean for each of the Nn samples.  

For this discrete uniform distribution the Mean = (Max + Min)/2 = (3+0)/2 = 1.5 and the 
variance = ((Max–Min+1)2–1)/12 = ((3–0+1)2–1)/12 = 1.25, and the std. dev. = 1.1180.   

Sampling results for all possible means with replacement.   

Sample Mean  Deviation from 1.5 Squared Deviation  
0, 0 0.0  -1.5 2.25  
0, 1 0.5  -1 1  
0, 2 1.0  -0.5 0.25  
0, 3 1.5  0 0  
1, 0 0.5  -1 1  
1, 1 1.0  -0.5 0.25  
1, 2 1.5  0 0  
1, 3 2.0  0.5 0.25  
2, 0 1.0  -0.5 0.25  
2, 1 1.5  0 0  
2, 2 2.0  0.5 0.25  
2, 3 2.5  1 1  
3, 0 1.5  0 0  
3, 1 2.0  0.5 0.25  
3, 2 2.5  1 1  
3, 3 3.0  1.5 2.25  

Distribution of the derived population of sample means 

Means Frequency Relative Freq 
Derived Population

0.00

0.05
0.10

0.15

0.20
0.25

0.30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 1 0.0625 
0.5 2 0.1250 
1.0 3 0.1875 
1.5 4 0.2500 
2.0 3 0.1875 
2.5 2 0.1250 
3.0 1 0.0625 

Sum = 16 1 

1

24 1.516

nN
n

kY
k

Y N


  
     

Original Population

0.00

0.25

0 1 2 3

r.f.
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 2 2 2 2

2 2

1

4(0.0) 6( 0.5) 4( 1.0) 2( 1.5)
( )

16

nN
n

kY
k

Y N 


     
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 4(0.0) 6(0.25) 4(1.0) 2(2.25) 10
0.625

16 16

  
 

     

  = 0.7906  

Note that the histogram of the derived population shows that the population is shaped more like 
the normal distribution than the original population.   

Probability statement from the two distributions:  Find P(1 ≤ Y ≤ 2)  

For the original, uniform population, P(1 ≤ Y ≤ 2) = 0.5000  

For the derived population, P(1 ≤  Y ≤ 2) = 0.6250  

THEOREM on the distribution of sample means 

Given a population with mean  and variance 2, if we draw all possible samples of size n 
(with replacement) from the population and calculate the mean, then the derived 
population of all possible sample means will have 

Mean:  Y   

Variance:  
22

Y n
   

Standard error:  
2

Y n n
      

Notice that the variance and standard deviation of the mean have “n” in the denominator.  As 
a result, the variance of the derived population becomes smaller as the sample size 
increases, regardless of the value of the population variance. 

Central Limit Theorem  

As the sample size (n) increases, the distribution of sample means of all possible samples, of a 
given size from a given population, approaches a normal distribution if the variance is 
finite.  If the base distribution is normal, then the means are normal regardless of n. 

Why is this important? (It is very important!) 

If we are more interested in the MEANS (and therefore the distribution of the means) 
than the original distribution, then normality is a more reasonable assumption. 

Often, perhaps even usually, we will be more interested in characteristics of the 
distribution, especially the mean, than in the distributions of the individuals.  Since 
the mean is often the statistic of interest it is useful to know that it is possibly 
normally distributed regardless of the parent distribution.   

NOTES on the distribution of sample means 

Another property of sample means 

as n increases, 2
Y  and Y  decrease. 

2
Y  ≤ 2  for any n  


