
Statistical Methods I (EXST 7005)  Page 21 

James P. Geaghan Copyright 2012 

Poisson – a discrete distribution  

 Mean =   

 Variance =   

a single parameter describes both variance and the mean  

Negative binomial – a discrete distribution with a parameter k that provides an index of 
dispersion.  

 Mean =   

 Variance = k  

the variance is greater than the mean  

Log normal – a continuous distribution.  

The logarithm of the values in this distribution are normally distributed.  

Standard normal – a normal distribution with mean = 0 and variance =1  

The distributions that we will be most concerned with are the normal and the standard normal.  

 

Measures of dispersion 

Our first major objective is to develop the concepts needed to understand hypothesis testing.   We will 
primarily test hypotheses about means, but variances can also be tested.  Testing means will 
require a measure of the dispersion or variability in the data set, so testing both means and 
variances requires knowledge of variance.  

The following presents some measures of variation or variability among the elements 
(observations) of a data set  

 Range – difference between the largest and smallest observation  

This is a rough estimator which does not use all of the information in the data set.  

 Interquartile range – difference between the third and first quartile (Q3 – Q1)  

Recall that the first quartile (Q1) is the value that has one quarter of the observations with 
lesser values and the third quartile has three quarters of the observations with lesser 
values.  This may be a better measure of variability than the range in most situations 
because the range can be influenced by a single unusually large or unusually small 
value. However, this measure also does not use all of the information in the data set. 

 Variance – the “average” squared deviation from the mean,  

The Population Variance is 2 (called “sigma squared”)   

This is a parameter, and therefore a constant  

The variance is given by 
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S2 is the Sample Variance (called “S-squared”).  

This is a statistic, and therefore a variable 
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The sample variance is given by 
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NOTE that the divisor is n–1 rather than n.  If n is used then the calculation is a biased 
estimator of 2, tending to be an under estimate.     

Standard Deviation – a standard measure of the deviation of observations from the mean.  It is 
calculated as the square root of the variance  

2       this is a parameter  

2S S      this is a statistic  

Mean Absolute Deviation (MAD) – the “average deviation” from the mean, but using absolute 
values.  This is another possible measure of dispersion.  However the variance is the usual 
calculation as it has some advantages over the MAD.  

Desirable properties of a measure of dispersion  

A valid, useful measure of dispersion should:  

 use all of the available information 
 be independent of other parameters (and statistics) for large data sets 
 be capable of being expressed in the same units as the variables 
 be small when the spread among the points in the data set is small, and large when the 

spread is wider. 

The Standard deviation meets these criteria.   

A note on units  

When we calculate the mean for a sample or population, the units on the mean are the same as 
for the original variable. If the original variable was measured in inches, the units of the 
mean will be inches 

The variance also has units, but since the calculation involves the square of the original 
variable, the units on the variance are the original variable squared.  If the original variable 
was measured in inches, the units of the variance would be inches squared 

Since the standard deviation is the square root of the variance, the units on the standard 
deviation would again be the same as the original variable.  

Degrees of freedom (d.f.) 

In the calculation of a population variance the divisor is N, while in the calculation for a sample 
the divisor is n–1.  This is because the calculated estimate of one parameter (2) uses an 
estimate of another parameter () in its calculation.  For a sample, the estimate of the 
variance (S2) employs a previously estimated statistic (Y ).  Since we use an estimate of 

Y  to calculate our estimate of S2, the divisor is n–1, 
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is called its degrees of freedom.  If we needed to estimate two parameters prior to 
estimating a parameter, the d.f. would be n–2.  
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Why?  If we knew , as we do for a population, then we could get an independent deviation 
from each and every observation.  

If we knew that = 5, and we drew an observation at random and its value was 3, then 
the deviation would be –2.  Each and every observation contributes a deviation 
since we know the value of .   

But we cannot get an estimate of 2 from a single sample observation since that 
observation is also its own mean and the deviation is zero.  If we drew a single 
sample observation, with a value of 3, and we did not know the value of , then we 
would estimate the value of Y  from our sample. That estimated value would also 
be 3 and there would be no deviation.   

In summary, with a known value of  every observation can deviate independently from 
, and the sum of the deviations has no restrictions.  However, deviations from Y  
always sum to ZERO, so only the first n–1 can assume “any” independent value.  
When we know the value of n–1 observations, the remaining observation is fixed 
by our knowledge of Y .  

Calculating the Variance  

The variance is calculated as the sum of squared deviations divided by the degrees of freedom.  

For a sample , 
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.  This calculation requires going through the data once to 

estimate Y  and a second time to estimate 2( )iY Y .    

The variance can, in many cases, be calculated more easily with the “calculator formula”.  

When we refer to “sum of squares”, or SS, we will mean the “Corrected Sum of Squares”, 
unless otherwise stated.  When we need to refer to the uncorrected sums of squares 
they will be denoted as UCSS or USS. 
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As noted, the deviation formula requires two passes through the data.  However, since 

most calculators can simultaneously accumulate both the sum of Yi, 
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through the data.  
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The “correction” made in corrected sums of squares is a correction for the mean.  This is 
apparent in the deviation formula, but not a obvious in the calculator formula. The 

term 
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 or 2nY  in the calculator formula is called the “correction factor”, 

and corrects for the mean.  

Finally, the sum of squares is divided by the degrees of freedom to get the variance.  The 
value of the sum of squares should be the same regardless of the formula used.  

An example of variance 

Examine two samples; 

 Sample 1:   1, 2, 3           Y  = 2  

 Sample 2:   11, 12, 13     Y  = 12 

Note that the deviations from the mean are the same in each case (–1, 0, 1) and the sum of 
squared deviations, SS = (–1)2 + (0)2 + (1)2 = 2, is also the same for both samples 
using the deviation formula.  

The corrected SS using the calculator formula are also the same 

 Sample 1  SS  =  14 – 12  =  2 

 Sample 2  SS  = 434 – 432 =  2 

And the Variance for both samples is then SS / (n–1) =   2 / 2 = 1 

So, two different looking sets of numbers have the same “scatter” and the same 
variance. 

Coefficient of variation 

CV is the standard deviation expressed as a percent of the mean,  100%SCV
Y

    

the CV is used to compare relative variation between different experiments or variables, 
independent of the mean.  This calculation allows the comparison of different 
variables (variability on automobile weights to variability in hippopotamus weights) or 
variables on different scales (e.g. inches to kilograms).  

Examples: 

compare the variability of peoples weights to peoples heights. 

compare variation in infants lengths to adult heights.  

NUMERICAL Example:  compare the relative variation in fork length of fish to the weights 
and scale lengths of the same fish.  Data from 3 year old Flier Sunfish (Centrarchus 
macropterus). 

 Length (mm) Weight  (g) Scale Lt. (mm) 
Mean 131.8 53.0 6.9 

Std Dev 15.1 19.6 0.8 
 

CV (length) = (15.1 / 131.8) × 100% = 11.5% 
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CV (weight) =(19.6 / 53.0) × 100% = 37.0% 

CV (scale length) = (0.8 / 6.9) × 100% = 11.6% 

From the results above we may conclude that the fish weights are relatively more 
variable than their length, and that the variability in body length and scale length 
are nearly the identical.  

Note:  

the CV has no units and can be highly variable and may well exceed 100%  

From SAS example #1a  

See SAS output Coefficient of Variation and other statistics discussed  

 

Expected values and Bias  

DEFINE 

Unbiased Estimator: a statistic is said to be an unbiased estimator of a parameter if, with 
repeated sampling, the average of all of the sample statistics approaches the parameter.  An 
estimator would be biased if on the average it approached a value that was a larger or 
smaller than the true target parameter.  

Expected value: the mean value of a statistic from a large number of samples (the “long run” 
average).  From our previous discussions, dividing by n–1 to calculate variance for a 
sample results in a value which is LARGER than if we divide by n.  If dividing by n–1 is 
the correct approach (giving an unbiased estimate), it suggests that dividing by a larger 
number, n, causes a negative bias (a value which is, on the average, too SMALL).  This is 
true.   

It is true that the expected value of the sample mean is equal to the population parameter 

(i.e.   E Y  , and it is also true that  2 2E S  , so these are unbiased estimators. 

Note that for symmetric distributions,  can also be estimated by the median, mode or 
midrange.  However, the mean is an unbiased estimator for all distributions. 

Expected Values are actually calculated as a sum (or integration for continuous variables) of 
the product of the observed values (Yi) in the distribution and the probability (p(Yi)) of 
occurrence of each value (e.g. ( )  [ ( )]i i iE Z Z P Z   ).  These have various uses, 

including the evaluation of bias.  

For our purposes;  

The expected value is the measure of the true central tendency for the probability 
distribution.  If we took all possible samples, the mean would be the expected value, 
provided the estimator we used is unbiased.  

For any statistic, if the expected value of the statistic is the same as the population value, the 
statistic is unbiased.  
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Summary of Dispersion  

Dispersion is a measure of the variability among the elements of a population or sample 

A number of estimates are available, including the Range, Interquartile range, Variance and 
Standard deviation.  All are available from SAS PROC UNIVARIATE. 

Units of the variable are squared on variances, but the same as the original variable for standard 
deviations.  

Calculations on samples must consider degrees of freedom.  

Both the sample means and sample variances (when divided by “n–1”) are unbiased estimators 
of their target parameters, the population mean and population variance, respectively. 

Constructing a Frequency Table  

DIVIDE the population into a number of classes or groups based on the characteristics studied.  

Categories are often quantitative, but not necessarily 

DETERMINE the number of observations in each class (i.e. the frequency of occurrence of 
observations in each class). 

CONSTRUCT the table with both classes and frequencies.  The frequencies may also be relative 
(i.e. percentages) or cumulative. 

Example 

Construct a frequency table for a population of fish age groups. 

N = 10  

Y = age of fish in years: 8, 4, 4, 0, 1, 5, 6, 5, 3, 4 

These values are placed into discrete age groups (0 to 8) 

Frequency Table   

Class value Frequency (f.) cumulative frequency (c.f.) 
0 1 1 
1 1 2 
2 0 2 
3 1 3 
4 3 6 
5 2 8 
6 1 9 
7 0 9 
8 1 10 

SUM 10  
 

Additional terms 

Frequency Total:  the total number of observations.  The sum of the class frequencies. 

Frequency (f): the number of observations in each class 
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Cumulative Frequency (c.f.): The sum of all class frequencies up to and including the class 
in question.  Implies an order or rank,  so this is usually done only with 
QUANTITATIVE VARIABLES 

Relative Frequency (r.f.): the ratio of the class frequencies to the total frequency.  These 
always sum to 1.0 

r.f. * 100%  gives the percentage frequency (sums to 100%) 

Relative Cumulative Frequency (r.c.f.):  the sum of the r.f. up to and including the class in 
question (for QUANTITATIVE VARIABLES). 

Frequency Table  

Class value frequency Cumulative
frequency 

Relative 
frequency  (r.f.) 

relative cumulative 
frequency (r.c.f) 

0 1  1  0.1 0.1 
 1 1  2  0.1 0.2 
 2 0  2  0.0 0.2 
 3 1  3  0.1 0.3 
 4 3  6  0.3 0.6 
 5 2  8  0.2 0.8 
 6 1  9  0.1 0.9 
 7 0  9  0.0 0.9 
 8 1  10  0.1 1.0 

SUM 10   1.0  

Graphic displays of frequencies  

HISTOGRAM or bar-chart - representation of a frequency table 

The area under each bar is proportional to the relative frequency (r.f.) of the class. 

0
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3

0 1 2 3 4 5 6 7 8 9  

FREQUENCY POLYGON  a variation of a histogram type plot in which the midpoints of 
each class relative frequency is connected with a straight line.  
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0
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3

 

 

Characteristics of histograms 
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When done with relative frequencies, the total area of a graph of relative frequencies is 1.0 

Any subsection of a graph of relative frequencies will have an area such that,  0 ≤ subsection 
area ≤ 1   

SAS example (#1b) from Freund & Wilson (1997) Table 1.1, see SAS output for results 

Things to note – Options  
dm'log;clear;output;clear'; 
OPTIONS LS=99 PS=512 nocenter nodate nonumber;  
ODS HTML body='C:\Example01.html' ;  
TITLE1 'Introductory SAS example 1'; 

– the DATA step 
– the raw DATA  (note ending semicolon)  
– the Procedures 

PROC MEANS  
PROC SORT; BY QUALITY;  
PROC MEANS; BY QUALITY;  
PROC FREQ 
PROC CHART; VBAR QUALITY; 
PROC CHART; HBAR QUALITY; 
proc gchart; pie QUALITY;  
proc gchart; star QUALITY;  
proc gchart; donut QUALITY;  

Summary 

Frequencies are a common and useful technique for descriptive statistics with many possible 
presentations.   

We would usually do the calculations in SAS   

The distributions that we will use for hypothesis testing will be in the form of frequency 
distributions   

Linear Models   

The simplest form of the linear additive model 

i iY      for i = 1, 2, 3,...,N 

This is a population version of the model, so the term  is a constant, it is the population mean  

The sample version would use Y , which is a statistic and a variable.  

i represents the deviations of the observations from the mean. It has a mean of zero since 
deviations sum to zero.  

ei would be used to represent sample deviations,  

and, of course, the population size, N, would be changed to the sample size, n.  

This is a mathematical representation of a population or sample.  All of the analyses discussed 
in the Statistical Methods courses have a linear model.  The models get more complex as 
the analysis gets more advanced.  
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Multiplicative models and multiplicative errors exist, but are not covered in basic statistical 
methods.  Note that the error term in this model is additive.  

Other models we will discuss this semester include:   

ij i ijY       .............................................. for the two sample t-tests: 

ij i ijY       ........................................... another form of the t-test also used for ANOVA 

0 1i i iY X       ..................................... Simple Linear Regression 

0 1 1 2 2 3 3i i i i iY X X X          ........... Multiple Linear Regression 

Coding and Transformations   

Objective – Hypothesis testing Background 

Many applications in statistics require modifying an existing distribution to an alternative form 
of the distribution.  Hypothesis testing, in particular, requires taking an observed 
distribution and transforming to a recognized statistical distribution with known properties.  
This modification involves a transformation.   

Theorems   

If a constant “a” is added to each observation then, the mean of the data set will increase by “a” 
units the variance and standard deviation will remain unchanged  

Example:  Population of size N = 4 

Yi = 2, 4, 6, 8  
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Now add 10 to each observation, the population size is still N = 4 

Yi = 12, 14, 16, 18  
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