\qquad

Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations for possible partial credit. Us a value of $\mathbf{0 . 0 5}$ for α if not specified. \mathbf{Z} tables and t tables are provided separately. You may keep these tables.

1) 8 points - Examine the discrete uniform distribution $U(1,20)$ above. Calculate the probabilities requested below.
a) $\mathrm{P}(\mathrm{Y}>10)$ \qquad
b) $\mathrm{P}(\mathrm{Y}=3)$ \qquad
c) $\mathrm{P}(4 \leq \mathrm{Y} \leq 16)=$ \qquad
d) $\mathrm{P}(\mathrm{Y} \geq 2)=$ \qquad
2) $\mathbf{3}$ points - Circle the answers below that are needed as assumptions for a Z test of hypothesis.
a) Normality
b) Mean $=0$
c) Known variance
d) Independence
e) Large sample size
3) $\mathbf{3}$ points - Which of the following is true of the mean, median and mode for data with a positive skew?
a) Mean < Mode < Median
b) Mode < Median < Mean
c) Mean < Median < Mode
d) Median < Mode < Mean
\qquad
4) $\mathbf{1 4}$ points - Answer the following questions as True or False by circling the appropriate letter.

T F a) Establishing an hypothesis is part of the scientific method.
T F b) The assumption of normality is more easily met with larger sample sizes according to the Central Limit Theorem.

T F c) For the Normal Distribution, it is true that the Mode, Median and Mean are equal.
T F d) Deviations of observations (i.e. $\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)$) from the sample mean always sum to zero.
T F e) When data is "corrected" with a correction factor, it is corrected for random sampling variation.
T F f) If data from a sample has been transformed by adding 100 no detransformation is needed for the variance.

T F g) If a sample of data has the units "millimeters" for the mean, the variance will have units of "millimeters squared".
5) 3 points - If you cut an honest deck of cards (with 54 different cards with equally likely values of $A, 2$, $3,4,5,6,7,8,9,10, J, Q$ and K and one of each equally likely suit for each value (e.g. e, \uparrow, \downarrow and \$)) plus two Jokers, the probability of getting a Joker is equal to
6) $\mathbf{1 2}$ points - An investigator is studying a population of Holly trees from an island off North Carolina. There are 100 trees on the island with a mean diameter of $\mathbf{1 5}$ inches and a standard deviation of 5 inches. Assuming that the tree diameters follow a normal distribution, answer the questions below pertaining to this population.
a) What is the probability that an individual selected at random would have a diameter greater than 23 inches?
b) What is the probability that the mean diameter of 6 individuals selected at random would be less than 9 inches?
c) What is the probability that an individual selected at random would have a diameter between 10 and 25 inches?
\qquad
7) $\mathbf{1 0}$ points - Find the probabilities indicated below.
a) $\mathrm{P}(\mathrm{Z} \leq 0.81)=$
P value = \qquad
b) $\mathrm{P}(\mathrm{Z} \geq-1.27)=$ \qquad P value $=$ \qquad
c) $\mathrm{P}(|\mathrm{Z}| \leq 1.22)=$
P value $=$ \qquad
d) $\mathrm{P}(|\mathrm{Z}| \geq 2.05)=$ \qquad
P value $=$ \qquad
e) $\mathrm{P}(-1.11 \leq \mathrm{Z} \leq 1.35)=$ \qquad P value $=$ \qquad
8) $\mathbf{1 6}$ points - Find the value of Z 0 which yields the following probabilities.
a) $\mathrm{P}\left(\mathrm{Z} \leq \mathrm{Z}_{0}\right)=0.1056$
b) $\mathrm{P}\left(\mathrm{Z} \geq \mathrm{Z}_{0}\right)=0.0116$
c) $\mathrm{P}\left(|\mathrm{Z}| \leq \mathrm{Z}_{0}\right)=0.2420$
d) $\mathrm{P}\left(\mathrm{Z}_{0} \leq \mathrm{Z}\right)=0.6469$
e) $\mathrm{P}\left(|\mathrm{Z}| \geq \mathrm{Z}_{0}\right)=0.2040$
f) $\mathrm{P}\left(\mathrm{Z}_{0} \geq \mathrm{Z}\right)=0.1170$
g) $\mathrm{P}\left(-\mathrm{Z}_{0} \leq \mathrm{Z} \leq+\mathrm{Z}_{0}\right)=0.2960$
h) $\mathrm{P}\left(\mathrm{Z}_{0} \leq \mathrm{Z} \leq 1.00\right)=0.6500$
$\mathrm{Z}_{0}=$ \qquad
9) 12 points - Suppose that a population under study is known to follow a normal distribution with the following characteristics. $\mu=100, \sigma^{2}=100, \sigma=10$ and where (or if) applicable, $n=25$. Find the probability (\mathbf{P} value) or value of Y0 for the following statements.
a) $\mathrm{P}(85 \leq \mathrm{Y} \leq 115)=$

P value $=$ \qquad
b) $\mathrm{P}\left(\mathrm{Y}_{0} \leq \mathrm{Y} \leq 110\right)=0.8300$
c) $\mathrm{P}\left(\mathrm{Y} \leq \mathrm{Y}_{0}\right)=0.9370$
d) $\mathrm{P}(97 \leq \overline{\mathrm{Y}} \leq 105)=$
$\mathrm{Y}_{0}=$ \qquad
$\mathrm{Y}_{0}=$ \qquad
P value $=$ \qquad
\qquad
11) Suppose that the data producing the SAS output provided is considered to be a POPULATION of unique individuals. The population was created by averaging 10 numbers from a uniform distribution (Uniform $(0,1)$) and multiplying by a constant and adding another constant to create a distribution with a mean of 50 and a variance of 20. It was thought that averaging 10 values from a Uniform distribution would create a Normal distribution.

Answer the questions below about the population. BE VERY CAREFUL AbOUT ANSWERING THESE QUESTIONS BECAUSE PROC UNIVARIATE DOES CALCULATIONS FOR SAMPLES, NOT POPULATIONS!

a) 5 points - What is the actual VARIANCE and standard deviation for this population? Give at least two decimal place precision! $\sigma^{2}=$ \qquad ,$\sigma=$ \qquad
b) 6 points - What is the probability that an individual drawn from this population will have a value between 52 and 56?.

$$
\mathrm{P}(52 \leq \mathrm{Y} \leq 56)=
$$

c) 8 points - Do a test of hypothesis (7 steps) to test the hypothesis that the mean of this population is equal to the hypothesized value of 50 .

Examine the output below and answer the questions on the last page of the exam.

EXST7005 Exam 1 problem Univariate summary statistics				
Univariate Procedure				
Variable=YVALUE				
Moments				
N	100	Sum Wgts	100	
Mean	49.4813	Sum	4948.13	
Std Dev	3.777262	Variance	14.26771	
Skewness	-0.15589	Kurtosis	-0.4252	
USS	246252.4	CSS	1412.503	
CV	7.633717	Std Mean	0.377726	
T : Mean=0	130.9978	Pr>\|T		0.0001
Num ${ }^{\wedge}=0$	100	Num > 0	100	
M (Sign)	50	Pr>= ${ }^{\text {P }}$	0.0001	
Sgn Rank	2525	$\operatorname{Pr}>=\|\mathrm{S}\|$	0.0001	
W: Normal	0.979813	$\mathrm{Pr}<\mathrm{W}$	0.5173	
Quantiles(Def=5)				
100\% Max	57.46	99\%	57.015	
75\% Q3	52.4	95\%	55.49	
50\% Med	49.37	90\%	54.5	
25\% Q1	46.93	10\%	44.645	
0\% Min	39.19	5\%	42.76	
		1\%	40.75	
Range	18.27			
Q3-Q1	5.47			
Mode	39.19			
Extremes				
Lowest	Obs	Highest	Obs	
39.191	95)	55.661	57)	
42.31 (7)	55.71 (23)	
42.651	33)	56.21 (14)	
42.731	79)	56.57 (39)	
42.74 (80)	57.46 (13)	
Stem Leaf			\# Boxplot	
575			1	
5626			2	
551377			4	
540223799			7	
53114468			6	
5201355778			8 +-----+	
510112344668			10	
502445569			7	
492223345689			10 *--+--*	
48222234568			9	
4702344667789			11	
4611233568			8 +-----+	
451334568			7	
442			1	
43126			3	
4236778			5	
41				
40				
392			1	

Page 5

