Read Carefully. Give an answer in the form of a number or numeric expression where possible. Show all calculations for possible partial credit. Us a value of 0.05 for α if not specified. Z tables and t-tables are provided separately. You may keep these tables.

1) 8 points — Examine the discrete uniform distribution U(1,20) above. Calculate the probabilities requested below.

- a) P(Y > 10) =
- b) P(Y=3) =
- c) $P(4 \le Y \le 16) =$
- d) $P(Y \ge 2) =$

2) 3 points — Circle the answers below that are needed as assumptions for a Z test of hypothesis. a) Normality

- b) Mean = 0
- c) Known variance
- d) Independence
- e) Large sample size

3) 3 points — Which of the following is true of the mean, median and mode for data with a positive skew?

- a) Mean < Mode < Median
- b) Mode < Median < Mean
- c) Mean < Median < Mode
- d) Median < Mode < Mean

4) 14 points – Answer the following questions as True or False by circling the appropriate letter. T F a) Establishing an hypothesis is part of the scientific method.

T F b) The assumption of normality is more easily met with larger sample sizes according to the Central Limit Theorem.

Exam 1

- **T F** c) For the Normal Distribution, it is true that the Mode, Median and Mean are equal.
- **T F** d) Deviations of observations (i.e. $(Y_i \overline{Y})$) from the sample mean always sum to zero.
- **T F** e) When data is "corrected" with a correction factor, it is corrected for random sampling variation.
- **T F** f) If data from a sample has been transformed by adding 100 no detransformation is needed for the variance.
- **T F** g) If a sample of data has the units "millimeters" for the mean, the variance will have units of "millimeters squared".
- 5) 3 points If you cut an honest deck of cards (with 54 different cards with equally likely values of A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q and K and one of each equally likely suit for each value (e.g. ♣, ♦, ♥ and ♠)) plus two Jokers, the probability of getting a Joker is equal to
- 6) 12 points An investigator is studying a population of Holly trees from an island off North Carolina. There are 100 trees on the island with a mean diameter of 15 inches and a standard deviation of 5 inches. Assuming that the tree diameters follow a normal distribution, answer the questions below pertaining to this population.
 - a) What is the probability that an individual selected at random would have a diameter greater than 23 inches?
 - b) What is the probability that the mean diameter of 6 individuals selected at random would be less than 9 inches?
 - c) What is the probability that an individual selected at random would have a diameter between 10 and 25 inches?

Exam 1

7) 10 points — Find the probabilities indicated below.

a) $P(Z \le 0.81) =$	P value =
b) P(Z ≥ -1.27) =	P value =
c) $P(Z \le 1.22) =$	P value =
d) $P(Z \ge 2.05) =$	P value =
e) P(-1.11 \leq Z \leq 1.35) =	P value =

8) 16 points — Find the value of Z0 which yields the following probabilities.

a) $P(Z \le Z_0) = 0.1056$	Z ₀ =
b) $P(Z \ge Z_0) = 0.0116$	Z ₀ =
c) $P(Z \le Z_0) = 0.2420$	Z ₀ =
d) $P(Z_0 \le Z) = 0.6469$	Z ₀ =
e) $P(Z \ge Z_0) = 0.2040$	Z ₀ =
f) $P(Z_0 \ge Z) = 0.1170$	Z ₀ =
g) P(-Z ₀ \leq Z \leq + Z ₀) = 0.2960	Z ₀ =
h) $P(Z_0 \le Z \le 1.00) = 0.6500$	Z ₀ =

9) 12 points — Suppose that a population under study is known to follow a normal distribution with the following characteristics. $\mu = 100$, $\sigma^2 = 100$, $\sigma = 10$ and where (or if) applicable, n = 25. Find the probability (P value) or value of Y0 for the following statements.

a) $P(85 \le Y \le 115) =$	P value =
b) $P(Y_0 \le Y \le 110) = 0.8300$	Y ₀ =
c) $P(Y \le Y_0) = 0.9370$	Y ₀ =
d) $P(97 \le \overline{Y} \le 105) =$	P value =

Initials ______ All sections : Geaghan

11) Suppose that the data producing the SAS output provided is considered to be a POPULATION of unique individuals. The population was created by averaging 10 numbers from a uniform distribution (Uniform(0,1)) and multiplying by a constant and adding another constant to create a distribution with a mean of 50 and a variance of 20. It was thought that averaging 10 values from a Uniform distribution would create a Normal distribution.

Answer the questions below about the population. BE VERY CAREFUL ABOUT ANSWERING THESE QUESTIONS BECAUSE PROC UNIVARIATE DOES CALCULATIONS FOR SAMPLES, NOT **POPULATIONS!**

- a) 5 points What is the actual VARIANCE and standard deviation for this population? Give at least two decimal place precision! $\sigma^2 =$ _____, $\sigma =$ _____
- b) 6 points What is the probability that an individual drawn from this population will have a value between 52 and 56?.

$$P(52 \le Y \le 56) = _$$

c) 8 points – Do a test of hypothesis (7 steps) to test the hypothesis that the mean of this population is equal to the hypothesized value of 50.

Exam 1

All sections : Geaghan

Examine the output below and answer the questions on the last page of the exam.

EXST7005 Exam 1 problem Univariate summary statistics

Univariate Procedure Variable=YVALUE

	Mome	ents		
N Mean Std Dev Skewness USS CV T:Mean=0 Num ^= 0 M(Sign) Sgn Rank W:Normal	$\begin{array}{c} 100\\ 49.4813\\ 3.777262\\ -0.15589\\ 246252.4\\ 7.633717\\ 130.9978\\ 100\\ 50\\ 2525\\ 0.979813\end{array}$	Sum Wgts Sum Variance Kurtosis CSS Std Mean Pr> T Num > 0 Pr>= M Pr>= S Pr <w< td=""><td>4 14 14 0.</td><td>$100 \\ 948.13 \\ .26771 \\ 0.4252 \\ 12.503 \\ 377726 \\ 0.0001 \\ 100 \\ 0.0001 \\ 0.0001 \\ 0.5173 \\ 0.5173 \\ 0.000 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.0000 \\$</td></w<>	4 14 14 0.	$100 \\ 948.13 \\ .26771 \\ 0.4252 \\ 12.503 \\ 377726 \\ 0.0001 \\ 100 \\ 0.0001 \\ 0.0001 \\ 0.5173 \\ 0.5173 \\ 0.000 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.0001 \\ 0.5173 \\ 0.0001 \\ 0.0000 \\$
100% Max 75% Q3 50% Med 25% Q1 0% Min Range Q3-Q1 Mode	Quantiles 57.46 52.4 49.37 46.93 39.19 18.27 5.47 39.19	:(Def=5) 99% 95% 90% 10% 5% 1%	57 5 44 4	.015 5.49 54.5 .645 2.76 0.75
Lowes 39.1 42.3 42.6 42.7 42.7	Extr Obs 9(95) 1(7) 5(33) 3(79) 4(80)	remes Highest 55.66(55.71(56.21(56.57(57.46(Ob	s 57) 23) 14) 39) 13)
Stem I 57 5 56 2 55 1 54 0 53 1 52 0 51 0 50 2 49 2 48 2 47 0 46 1 45 1 44 2 43 1 42 3 41 40 39 2	eaf 377 223799 14468 1355778 112344668 445569 22234568 2344667789 1233568 334568 26 6778	+	# 1 2 4 7 6 8 10 7 10 9 11 8 7 1 3 5	Boxplot

Exam 1

EXST7005 Exam 1 problem

Histogram

Frequency

YVALUE Midpoint