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Interpretation of regression coefficients: For the simple linear regression we know that the units of the 
intercept are the same as the units on the variable “Y”.  The slope has units of “Y units per X unit”.  
The same is true of the intercept and slopes in multiple regression, except each Xij could have 
different units so each estimated regression coefficient (bi) would have different “Y units per Xi 
unit”. 

 The regression coefficients in multiple regression have similar interpretations and limitations to 
those in simple linear regression.  However, as mentioned, the individual variables Xi modify each 
other.  As a result the interpretation depends on other variables included in the model. 

Also, all of the assumptions of simple linear regression also apply to multiple regression.  Normality and 
constant variance are assumptions that can be examined from the residuals.  The additional 
assumptions of independence and “Xi measured without error” are harder to examine. 

The text discusses what it calls “specifically constructed explanatory variables”.  These include 
polynomial models, which we have discussed, and indicator variables.  Indicator variables are 
usually coded as the values “0” and “1”.  For a single binary indicator variable, only a single 
column is needed, although two could be used (see “Timing Indicators” below).  Note that a single 
variable would have only 1 d.f.  Although two columns can be used, this variable can only use a 
single degree of freedom. 

After Display 9.7 from the text.  Explanatory variables coded as indicator variables and interaction.   
Original variable Timing indicators Light level indicators Interaction 

FLOWERS INTENSITY TIME day 24 day 0 L150 L300 L450 L600 L750 L900 Light x day24
62.3 150 0 0 1 1 0 0 0 0 0 0 
77.4 150 0 0 1 1 0 0 0 0 0 0 
77.8 150 24 1 0 1 0 0 0 0 0 150 
75.6 150 24 1 0 1 0 0 0 0 0 150 
55.3 300 0 0 1 0 1 0 0 0 0 0 
54.2 300 0 0 1 0 1 0 0 0 0 0 
69.1 300 24 1 0 0 1 0 0 0 0 300 
78.0 300 24 1 0 0 1 0 0 0 0 300 
49.6 450 0 0 1 0 0 1 0 0 0 0 
61.9 450 0 0 1 0 0 1 0 0 0 0 
57.0 450 24 1 0 0 0 1 0 0 0 450 
71.1 450 24 1 0 0 0 1 0 0 0 450 
39.4 600 0 0 1 0 0 0 1 0 0 0 
45.7 600 0 0 1 0 0 0 1 0 0 0 
62.9 600 24 1 0 0 0 0 1 0 0 600 
52.2 600 24 1 0 0 0 0 1 0 0 600 
31.3 750 0 0 1 0 0 0 0 1 0 0 
44.9 750 0 0 1 0 0 0 0 1 0 0 
60.3 750 24 1 0 0 0 0 0 1 0 750 
45.6 750 24 1 0 0 0 0 0 1 0 750 
36.8 900 0 0 1 0 0 0 0 0 1 0 
41.9 900 0 0 1 0 0 0 0 0 1 0 
52.6 900 24 1 0 0 0 0 0 0 1 900 
44.4 900 24 1 0 0 0 0 0 0 1 900 

 
For variables with more than a single dichotomous value, sets of indicator variables are used.  The levels 

of the variable are still coded as “0” and “1” indicator variables, and one can be set up for each level 
of the variable.  However, for t levels of a treatment only t – 1 degrees of freedom can be assigned.  
The default pattern in SAS is to omit the variable in the last alpha-numeric position.  The table 
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above shows that “light level indicators” could be coded as an indicator variable (rather than a 
quantitative variable). 

The Meadowfoam flower experiment was presented in this chapter as a regression.  I would normally 
treat this analysis as a “Two-way Analysis of Variance” or “2 x 6 Factorial treatment arrangement 
in a CRD (Completely Randomized Design)”.  I would do this because this analysis is a designed 
experiment with two treatments with a total of 12 combinations.  Once fit as an ANOVA, the model 
could be tested for a linear trend in the quantitative treatment “light level” and eventually reduced to 
a regression with one or two slopes and one or two intercepts.  This would be the analysis of 
covariance presented by the text. 

You have seen my graphical description of Analysis of Covariance (AnCova).  Graphics from the text 
are given below.  Note particularly the effect of the interaction between the variables.  This 
interaction term was included in the table above. 
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The book suggests a general approach to fitting a model.  I generally agree with the model for regression 
analysis.  However, designed experiments generally have a predefined design, and I would start 
with that model.  This is generally a “full” model with all components included.  I would then 
examine potential reductions in the full model, like fitting a quantitative variable to light intensity 
instead of an indicator (or class) variable. 

If we fit a model with timing (indicator variable) and light (as an indicator variable) and then fit 
the same model with light as a quantitative variable, what do we call the extra SS for this 
model? 

For regression model I would be in general agreement with the book, starting with a simple model and 
then fitting a “richer” model where appropriate.  I particularly like the ancillary comments: using 
graphics to check for transformations and outliers, stating your research question in terms of 
parameter estimates, checking assumptions and the significance of variables in the model, the use of 
confidence intervals (especially if you have stated your research question in terms of parameter 
estimates) and making your final discussion in terms of the subject matter and not the statistics. 
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The books refers to a “randomized experiment” as one where the investigator controls all of the 
conditions of the experiment, including the treatment and which individuals are assigned to which 
treatments.  This is a designed experiment done under controlled conditions.  As the book points 
out, in such an experiment, such as the light experiment and timing manipulations, the investigators 
can attribute the observed effects to the experimental manipulations because they control all other 
aspects of the experiment.  If an investigator wishes to demonstrate “cause and effect”, this is the 
type of experiment that must be done.  The statistical examination of observational or survey type of 
data, such as the mammal brain size data, can yield some compelling correlations, but causal 
interpretations are not justified from this type of data. 

 

When to include interaction – The book states that interactions are not normally included in 
regressions.  I disagree in the case of analysis of covariance, I usually start with the interaction and 
work up the model from the bottom, reducing the model where possible.  It is true that in most 
multiple regressions we do not automatically fit interactions to the variables. 

  I agree that if interactions to variables are included in the model the individual terms should be 
included in the model even if they are not significant.  For example if the interaction of X1 and X2 is 
significant (X1X2) then X1 and X2 would both be included in the model even if their coefficients 
were not significantly different from zero.  

 

The next example is not a designed experiment, it is an observational study.  In this study biologists are 
interested in the correlations between brain size and certain variables.  Those variables are gestation 
time, litter size and body size.  Since I expect a power model would be best suited to fit brain size to 
body size I included logarithm transformed variables in the mix. 

 


