Chapter 9 : Multiple Regression

The first example of multiple regression is a designed experiment. The experiment involves the development of flowers on "Meadowfoam" a small cultivated plant used for its seed oil. The data for this analysis comes from one experiment on this plant that examined flower production. There were two treatments in this experiment. The first was 6 levels of light intensity (150, 300, 450, 600, 750 and 900 $\mu \mathrm{mol} / \mathrm{m}^{2} / \mathrm{sec}$) and the second was the timing of the application of light, either early or late in the flower growing period.

```
1
2 *** The effect of light on Meadowfoam flowering. ***
3 *** Results of an experiment where the effedt of six ***;
4 *** levels of light intensity and the timing of the ***
5 *** light treatment was investigated. *******************************************************************)
7
8 dm'log;clear;output;clear';
9 options nodate nocenter nonumber ps=512 ls=99 nolabel;
10 ODS HTML style=minimal rs=none
10 ! body='C:\Geaghan\Current\EXST3201\Fall2005\SAS\Meadowfoam01.html' ;
NOTE: Writing HTML Body file:
C:\Geaghan\Current\EXST3201\Fall2005\SAS\Meadowfoam01.html
Title1 'Chapter 9 : The effect of light on Meadowfoam flowering';
filename input1
'C:\Geaghan\Current\EXST3201\Datasets\ASCII\case0901.csv';
data Meadowfoam; infile input1 missover DSD dlm="," firstobs=2;
    input FLOWERS TIME INTENSity;
        label Flowers = 'Average number of flowers per plant'
                        Time = 'Early and Late'
                        Intensity = 'Level of light intensity';
                        Time0 = Time - 1;
            TimeName = 'Early'; if time eq 1 then Timename = 'Late';
                datalines;
NOTE: The infile INPUT1 is:
    File Name=C:\Geaghan\Current\EXST3201\Datasets\ASCII\case0901.csv,
    RECFM=V, LRECL=256
NOTE: 24 records were read from the infile INPUT1.
    The minimum record length was }8
    The maximum record length was 24.
NOTE: The data set WORK.MEADOWFOAM has 24 observations and 5 variables.
NOTE: DATA statement used (Total process time):
    real time 0.02 seconds
    cpu time 0.02 seconds
                run;
                    PROC PRINT DATA=Meadowfoam; TITLE2 'Raw data Listing'; RUN;
25
NOTE: There were 24 observations read from the data set WORK.MEADOWFOAM.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):
    real time 0.11 seconds
    cpu time 0.02 seconds
26
```

I modified the data so that, in addition to the variables "FLOWERS, TIME AND INTENSITY" the variable time which originally had values of $(1,2)$ was also expressed as $(0,1)$ and as (Early, Late).

Chapter 9 : The effect of light on Meadowfoam flowering
Raw data Listing

Obs	FLOWERS	TIME	INTENSity	Time0	Time Name						
1	62.3000	1	150	\bigcirc	Late	13	77.8000	2	150	1	Early
2	77.4000	1	150	0	Late	14	75.6000	2	150	1	Early
3	55.3000	1	300	0	Late	15	69.1000	2	300	1	Early
4	54.2000	1	300	0	Late	16	78.0000	2	300	1	Early
5	49.6000	1	450	0	Late	17	57.0000	2	450	1	Early
6	61.9000	1	450	0	Late	18	71.1000	2	450	1	Early
7	39.4000	1	600	0	Late	19	62.9000	2	600	1	Early
8	45.7000	1	600	0	Late	20	52.2000	2	600	1	Early
9	31.3000	1	750	0	Late	21	60.3000	2	750	1	Early
10	44.9000	1	750	0	Late	22	45.6000	2	750	1	Early
11	36.8000	1	900	0	Late	23	52.6000	2	900	1	Early
12	41.9000	1	900	0	Late	24	44.4000	2	900	1	Early

27
28
29
30
30
31

> options ps=52 ls=111;
proc plot data=Meadowfoam; TITLE2 'Plot of the raw data';
plot Flowers * Intensity = TimeName;
RUN;
! OPTIONS PS=256;

Chapter 9 : The effect of light on Meadowfoam flowering
Plot of the raw data

NOTE: 2 obs hidden.
First examine the raw data plot. Note the expression of the first letter from "Early" and "Late".

The first model was fitted as a SLR to the quantitative variable "TIME".

```
32 Title2 'Initial fit of the raw data to TIME';
NOTE: There were 24 observations read from the data set WORK.MEADOWFOAM.
NOTE: The PROCEDURE PLOT printed page 2.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.06 seconds
    cpu time 0.00 seconds
```


The next model was fitted as a SLR to the quantitative variable "intensity".

```
36 Title2 'Initial fit of the raw data to INTENSITY';
37 PROC REG DATA=Meadowfoam lineprinter;
38 MODEL Flowers = Intensity;
39
4 0
4 1
NOTE: The data set WORK.NEXT has 24 observations and 6 variables.
NOTE: The PROCEDURE REG printed page 4.
NOTE: PROCEDURE REG used (Total process time):
    real time 0.10 seconds
    cpu time 0.04 seconds
```

Chapter 9 : The effect of light on Meadowfoam flowering
Initial fit of the raw data to INTENSITY
The REG Procedure
Model: MODEL1
Dependent Variable: FLOWERS
Number of Observations Read

Analysis of Variance		Sum of	Mean			
Source	DF	Squares	Square	F Value	$\mathrm{Pr}>\mathrm{F}$	
Model	1	2579.75004	2579.75004	32.28	<. 0001	
Error	22	1758.18622	79.91756			
Corrected Total	23	4337.93627				
Root MSE	8.93966	R -Square	0.5947			
Dependent Mean	56.13750	Adj R-Sq	0.5763			
Coeff Var	15.92458					
Parameter Estimates						
	Parameter	Standard				
Variable DF	Estimate	Error	t Value	Pr > \|t		
Intercept 1	77.38500	4.16119	18.60	<. 0001		
INTENSity 1	-0.04047	0.00712	-5.68	<. 0001		
42 options ps=52 ls=111;						
43 proc plot data=next; TITLE2 'Plot of the raw data';						
44 plot resid * Intensity = TimeName;						
45 RUN;						
45 ! OPTIONS PS=256;						
NOTE: There were 24 observations read from the data set WORK. NEXT.						
NOTE: The PROCEDURE PLOT printed page 5.						
NOTE: PROCEDURE PLOT used (Total process time):						
46 cpu time	0.02	econds				

Note the general separation in the "E" and "L" groups below. The were not included in this model.
Chapter 9 : The effect of light on Meadowfoam flowering
Plot of the raw data

NOTE: 1 obs hidden.

Is there an interpretation of the slope and intercept? Can plants grow flowers if light intensity is zero? The units on the slope is "flowers per $\mu \mathrm{mol} / \mathrm{m}^{2} / \mathrm{sec}$ of light intensity"

Calculation of Extra Sum of Squares.

SSXT $=886.95034$
SSXI $=2579.75004$
SSXT | XI = 3466.70039-2579.75004 = 886.95034
SSXI \mid XT $=3466.70039-886.95034=2579.75004$
How come the SS for each variable is not modified by the other???

```
52 ! OPTIONS PS=45;
53 TITLE3 'Plot of residuals';
54 Proc plot; PLOT resid*Intensity=timename / vref=0;
NOTE: There were 24 observations read from the data set WORK.NEXT.
NOTE: The PROCEDURE PLOT printed page 7.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.13 seconds
    cpu time 0.03 seconds
Chapter 9 : The effect of light on Meadowfoam flowering
Multiple regression
Plot of residuals
```

Note that there is no longer appreciable separation in the "E" and "L" groups.

55

56

 56 57NOTE: There were 24 observations read from the data set WORK.NEXT.
NOTE: The PROCEDURE PLOT printed page 8.
NOTE: PROCEDURE PLOT used (Total process time):
real time 0.04 seconds
cpu time 0.00 seconds

Chapter 9 : The effect of light on Meadowfoam flowering Multiple regression
Plot of residuals


```
58 PROC UNIVARIATE DATA=NEXT NORMAL PLOT; VAR resid;
59 RUN;
NOTE: The PROCEDURE UNIVARIATE printed page 9.
NOTE: PROCEDURE UNIVARIATE used (Total process time):
    real time 0.05 seconds
    cpu time 0.02 seconds
```

60

Chapter 9 : The effect of light on Meadowfoam flowering
Multiple regression
Plot of residuals

The UNIVARIATE Procedure
Variable: resid
Moments

N	24	Sum Weights	24
Mean	0	Sum Observations	0
Std Deviation	6.15465847	Variance	37.8798209
Skewness	0.21089332	Kurtosis	-1.0360321
Uncorrected SS	871.23588	Corrected SS	871.23588
Coeff Variation	.	Std Error Mean	1.2563144

Basic Statistical Measures Location Variability
Mean 0.00000 Std Deviation 6.15466
Median -1.55821 Variance 37.87982
Mode .
Range 21.81715
Interquartile Range 10.11845

```
Tests for Location: Mu0=0
\begin{tabular}{lllll} 
Test & Statistic- & \multicolumn{2}{l}{\(----p\) Value----- } \\
Student's \(t\) & t & 0 & \(\operatorname{Pr}>|\mathrm{t}|\) & 1.0000 \\
Sign & M & -1 & \(\operatorname{Pr}>=|M|\) & 0.8388 \\
Signed Rank & S & -2 & \(\operatorname{Pr}>=|S|\) & 0.9559
\end{tabular}
Tests for Normality
Test
\begin{tabular}{lrlr}
--Statistic-- & ---- p & Value------ \\
W & 0.955588 & Pr \(<\) W & 0.3563 \\
D & 0.126766 & Pr \(>\) D & \(>0.1500\) \\
W-Sq & 0.068129 & Pr \(>\) W-Sq & \(>0.2500\) \\
A-Sq & 0.405333 & Pr \(>\) A-Sq & \(>0.2500\)
\end{tabular}
Quantiles (Definition 5)
Quantile Estimate
100% Max 12.16488
99% 12.16488
95% 8.80631
90% 7.18940
75% Q3 5.70405
50% Median -1.55821
25% Q1 -4.41441
10% -7.62298
5% -8.25202
1% -9.65226
0% Min -9.65226
Extreme Observations
\begin{tabular}{cr}
---- Lowest---- \\
Value & Obs \\
-9.65226 & 9 \\
-8.25202 & 17 \\
-7.62298 & 7 \\
-7.51060 & 22 \\
-6.98131 & 20
\end{tabular}
\begin{tabular}{rl} 
Stem & Leaf Boxplot \\
12 & 2 \\
10 & \\
8 & 8 \\
6 & 702 \\
4 & 68 \\
2 & 79 \\
0 & 49 \\
-0 & 83 \\
-2 & 95962 \\
-4 & 0 \\
-6 & 650 \\
-8 & 73 \\
& ----+---+---+--+
\end{tabular}
\begin{tabular}{rr}
--- -Highest---- \\
Value & Obs \\
6.67726 & 16 \\
7.01845 & 12 \\
7.18940 & 21 \\
8.80631 & 6 \\
12.16488 & 2
\end{tabular}
```


Other models discussed by the text
Simple linear regression:

$$
\mu_{\{Y \mid X\}}=\beta_{0}+\beta_{1} X_{i}
$$

Basic multiple linear regression:

$$
\begin{aligned}
& \mu_{\left\{Y \mid X_{1}, X_{2}\right\}}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i} \\
& \mu_{\left\{Y \mid X_{1}, X_{2}, X_{3}, \ldots, X_{k}\right\}}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\ldots+\beta_{k} X_{k i}
\end{aligned}
$$

Polynomial regression:

$$
\begin{aligned}
& \mu_{\left\{Y \mid X, X^{2}\right\}}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2} \\
& \mu_{\left\{Y \mid X, X^{2} X^{3} \ldots X^{k}\right\}}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+\ldots+\beta_{k} X_{i}^{k}
\end{aligned}
$$

Multiple regression with interaction:

$$
\mu_{\left\{Y \mid X_{1}, X_{2}, X_{1} X_{2}\right\}}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}
$$

Multiple regression with transformation: $\quad \mu_{\left\{Y \mid \log \left(X_{1}\right), \log \left(X_{2}\right)\right\}}=\beta_{0}+\beta_{1} \log \left(X_{1 i}\right)+\beta_{2} \log \left(X_{2 i}\right)$
Analysis of covariance is a least squares model that has a mix of quantitative variables (typical regression variables) and indicator variables (binary variables coded as 0 or 1). The models fitted are as follows:

Simple linear regression: $\quad \hat{Y}_{i}=b_{0}+b_{1} X_{1 i}$
Basic multiple linear regression: $\quad \hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}$

$$
\begin{aligned}
& \text { When group = 0: } \hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}=b_{0}+b_{1} X_{1 i}+b_{2} 0=b_{0}+b_{1} X_{1 i} \\
& \text { When group }=1: \hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}=b_{0}+b_{1} X_{1 i}+b_{2} 1=\left(b_{0}+b_{2}\right)+b_{1} X_{1 i}
\end{aligned}
$$

multiple linear regression with interaction: $\quad \hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+b_{3} X_{1 i} X_{2 i}$
When group = 0: $\hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+b_{3} X_{1 i} X_{2 i}=b_{0}+b_{1} X_{1 i}+b_{2} 0+b_{3} X_{1 i} 0=b_{0}+b_{1} X_{1 i}$
When group $=1$:

$$
\hat{Y}_{i}=b_{0}+b_{1} X_{1 i}+b_{2} X_{2 i}+b_{3} X_{1 i} X_{2 i}=b_{0}+b_{1} X_{1 i}+b_{2} 1+b_{3} X_{1 i} 1=\left(b_{0}+b_{2}\right)+\left(b_{1}+b_{3}\right) X_{1 i}
$$

A note on extra SS.

SAS recognizes 4 types of sum of squares in various procedures (especially PROC GLM). However, only two types of SS apply to regression. These are called TYPE I SS (or sequential SS) and TYPE II SS (or partial SS). For regression TYPE III and TYPE IV are the same as TYPE II (partial SS).
For the SAS model: MODEL Y = X1 X2 X3 X4; SAS would fit the following TYPE I and TYPE II sums of squares.

Variable	Type I SS	Type II, III or IV SS
X1	SSX1	SSX1\|X2, X3, X4
X2	SSX2\|X1	SSX2\|X1, X3, X4
X3	SSX3\|X1, X2	SSX3\|X1, X2, X4
X4	SSX4\|X1, X2, X3	SSX4\|X1, X2, X3

Indicator variables - Non quantitative variables, called CLASS variables, GROUP variables or indicator variables are ANOVA type variables. These distinguish between groups such as freshman, sophomore, junior and senior or Male and Female. They require, as a group, one less degree of freedom than there are groups, as we saw in ANOVA (i.e. t groups require $t-1$ d.f.)

These variables are coded in the analysis as 0 and 1, similar to the contrasts we saw in ANOVA. Also, as with ANOVA, the indicator variable will fit the difference between means for the various groups. When included in regression the indicator variable will fit differences in levels or intercepts.

Indicator variables are usually treated as a group, so SAS will report the SS for the group of variables. If, for example, we had the CLASS variable "YEAR" with levels [freshman, sophomore, junior and senior], SAS would calculate a single sum of squares for the group with 3 d.f.

Analysis of Covariance - a combination of quantitative and indicator variables

Polynomials - models employing successive power terms (all terms must be included up to the highest power used in the model.) These should be fitted with TYPE I SS.

$$
\mu_{\left\{Y \mid X, X^{2} X^{3} \ldots X^{k}\right\}}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+\ldots+\beta_{k} X_{i}^{k}
$$

Polynomials: With X and X^{2} it is called a Quadratic curve

It is not necessary to fit the full sweep of the curve.

Cubic models have X, X^{2} and X^{3}.

Again, it is not necessary to fit the full sweep of the curve.

