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Chapter 8 (A little more on Assumptions for the Simple Linear Regression) 
Linearity assumption – the best way to determine an appropriate model is to examine the literature for a 

theoretical model, or to see what model other investigators have found appropriate for a particular 
type of relationship.   

There are some guidelines for selecting a transformation.  Transformations in X do not affect the 
homogeneity of variance.  The first model below would be fitted by a transformation of X like 
log(X) or ln(X) or √X.  The second would be fitted by X2 or eX, and the third by X2, 1/X or e-X. 
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If the original data is homogeneous, the transformed model will still be homogeneous if only the X 
variable is transformed.  Transformations of Y, on the other hand, will influence the homogeneity of 
variance.  The model below would be transformed by log(Y) or ln(Y) or √Y or 1/Y.    
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Transformations of Y, used to fit curvature when variance is NOT homogeneous and NOT normal  
 
We saw several examples of these types of models, 1 iX

i 0 iY eββ ε=  and 1Y Xi 0 i i
β
εβ= .  Transformations of 

Xi are not as common except for polynomials (e.g. X, X2, X3, X4, etc,  covered in Chapter 10).  
Logarithmic transformations of Xi are used for some toxicology studies where the effect of a toxin 
is evaluated at a logarithmic progression of levels (e.g. 0.01mg/l, 0.1mg/l, 1mg/l, 10mg/l, 100mg/l, 
1000mg/l, etc.)  A logarithmic transformation (base 10) will then produce equally spaced values on 
the X axis and frequently linearize the data.    



EXST3201 –Chapter 8c Geaghan Fall 2005: Page 2 

Graphical tools for Model Assessment  
Scatterplot of Y on X  (See graphics from the text).   

 
 
a) the text describes this as ideal, a straight line with homogenous variance  

b) curved, but monotonic and homogeneous variance.  Text recommends transforming X.   

c) curved and homogeneous variance, not monotonic.  Recommends quadratic regression (Chapter 10).   

d) curved, monotonically increasing with nonhomogeneous variance, use a transformation in Y (log, 
reciprocal or square root).   

e) linear and monotonically increasing, but skewed.  Recommends SLR but reporting skewness.   

f) linear and monotonically increasing, but nonhomogeneous.  Recommends weighted regression 
(Chapter 11).   
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Scatterplot of residuals  (See graphics from the text).   
 

Normal residual plot, no problem 

Residual Plot
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Residual plot shows curvature  

Residual Plot
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Nonhomogeneous variance 

Residual Plot
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Presence of outliers 

Residual Plot
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Presence of several separate lines or levels

Residual Plot
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Assessment of Fit  
Your book recognizes three models at this point. 

| iY Xµ µ=  equal means model (single mean), one degree of freedom is correction factor adjustment  

| iY X iµ µ=  separate means model (ANOVA), one d.f. for each mean  

| 1iY X o iXµ β β= +  simple linear regression, 2 d.f.  

 

Extra SS for the difference between SLR and single mean model is the SSRegression 

Extra SS for the difference between ANOVA and single mean is the SSModel for analysis of 
variance 

Extra SS for the difference between SLR and ANOVA is lack of fit (SSLOF) 
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Calculating Lack of Fit for the fluid breakdown experiment – first for untransformed data  
Regression analysis  

Analysis of Variance                Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     1        2150408        2150408      24.27    <.0001 
Error                    74        6557345          88613 
Corrected Total          75        8707754 

 
ANOVA  

Dependent Variable: TIME            Sum of 
Source                   DF        Squares     Mean Square   F Value    Pr > F 
Model                     6    5082509.892      847084.982     16.12    <.0001 
Error                    69    3625243.641       52539.763 
Corrected Total          75    8707753.533 

 
Composite (breakdown of the 6 d.f. of ANOVA into SSRegression (1 d.f.) and SSLOF (5 d.f.) 

Dependent Variable: TIME            Sum of 
Source                   DF        Squares     Mean Square   F Value    Pr > F 
Model                     6    5082509.892      847084.982     16.12    <.0001 
   Regression             1    2150408.256     2150408.256      24.27    <.0001 
   Lack of Fit            5    2932101.636      586420.327      11.16    <.0001 
Error                    69    3625243.641       52539.763 
Corrected Total          75    8707753.533 

This test shows a significant LOF (F=11.16, P>F<0.0001), indicating that the regression does 
not provide an adequate description of the means.   

 
Calculating Lack of Fit for the fluid breakdown experiment – transformed data  
Regression analysis  

Analysis of Variance               Sum of           Mean 
Source                   DF       Squares         Square    F Value    Pr > F 
Model                     1     190.15149      190.15149      78.14    <.0001 
Error                    74     180.07484        2.43344 
Corrected Total          75     370.22633 

 
ANOVA  

                                      Sum of 
Source                   DF         Squares     Mean Square    F Value    Pr > F 
Model                     6     196.4774059      32.7462343      13.00    <.0001 
Error                    69     173.7489210       2.5181003 
Corrected Total          75     370.2263270 

 
Composite (breakdown of the 6 d.f. of ANOVA into SSRegression (1 d.f.) and SSLOF (5 d.f.) 

Dependent Variable: LogTIME         Sum of 
Source                   DF         Squares     Mean Square    F Value    Pr > F 
Model                     6     196.4774059      32.7462343      13.00    <.0001 
   Regression             1     190.1514905     190.1514905      78.14    <.0001 
   Lack of Fit            5       6.3259154       1.2651831       0.50    0.7734 
Error                    69     173.7489210       2.5181003 
Corrected Total          75     370.2263270 

This test shows the LOF to be not significant (F=0.50, P>F<0.7734), indicating that the 
regression does provide an adequate description of the means.   
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The calculation of Lack of Fit is an F test whose denominator is the Mean Square Difference between 
the full (ANOVA) and reduced (SLR) models.  The denominator is the best available estimate of 
error, which is the full model error.   

   
( ) /( . . . . )Regression ANOVA Regression ANOVA

ANOVA

SSError SSError d f Error d f Error
F

MSError
− −

=   

 

Choosing between SLR and ANOVA  
In the example above the data was from a designed experiment, so the data was in groups.  This analysis 

can either be done with a simple linear regression (1 d.f.) or as an ANOVA (6 d.f.).  Generally, the 
model with fewer degrees of freedom is preferred.  The regression analysis usually has a better 
interpretation.  As a general rule, the simplest model is preferred.   

Lack of fit can be used to examine the adequacy of the regression model even if the experiment is not a 
designed experiment.  Any time there are some repeated observations at some values of Xi, lack of 
fit can be calculated.  Repeated observations are not needed at all values of Xi.   

 

R square, also called the Coefficient of Determination   
The R2 is the fraction of the corrected total SS that is accounted for by the model, or regression, SS.   

  2 SSRegressionR
SSTotal

=   

The proportion is usually expressed as a percent.   

This statistic is not very meaningful unless the investigator is familiar with the context.  Generally larger 
is better, but for some analyses a value of 30% might be very good while for other applications 90% 
is poor.   

The square root (r) is the correlation coefficient between Yi and Xi.   
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Other Residual plots for special situations (time order plot or ordered data plots)   
In some situations we can detect problems by plotting the residuals on time or on the order that the data 

was taken.  The problems detected have to do with a lack of independence, or in some cases the 
presence of variation due to an additional variable not included in the model (a time trend).    

 
a) Random variation (or “noise” as the book calls it):  this is the expected pattern when the 

assumptions of independence is met.   

b) Time trend: in this case there is some additional variable that is influencing the data and is related to 
time.  It may be, for example, a function of “learning” as the experiment progresses.  If the 
independent variable is randomized this will only add extra variation and will not bias the variable.    

c) Serial correlation (positive): if an observation has a positive residual there is a tendency for the next 
observation to also have a positive residual.  Eventually the pattern switches, so negative residuals 
are followed by negative residuals.  This indicates a lack of independence.     

d) Serial correlation (negative): this is the reverse of the previous pattern such that there is a tendency 
for positive residual is followed by negative residuals and vice versa.  This pattern also indicates a 
lack of independence.     
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Normal probability plots  
The best method of determining if you have met the assumption of normality is to use a statistical test.  

One of the better tests available is the Shapiro-Wilk test available in SAS PROC UNIVARIATE.  
There are also some graphical techniques (stem and leaf plot, box plot and normal probability plot) 
that will aid in determining if the assumption of normality is met and, if the assumption is not met, 
can aid in determining the nature of the departure from normality.   

  In SAS PROC UNIVARIATE the null hypothesis for the tests of normality is that the distribution 
of the raw data is consistent with a normal distribution.  In order to obtain the tests of normality the 
“NORMAL” option must be requested.  To get the plots mentioned the option “PLOT” should be 
included.  The residuals tested can be obtained from many SAS procedures including PROC REG 
and PROC MIXED.   

  PROC UNIVARIATE DATA=datasetname NORMAL PLOT; VAR residualname; 
RUN; 

 

The normal probability plot is useful in determining how a distribution departs from normality.  Some 
examples are given below.   

 
a) Typical pattern for normality  

b) Symmetric distribution, but with long tails in both directions (– and +).    

c) Asymmetric distribution, but with long tails in the  + direction.    

d) Presence of an outlier  
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Below are some PROC UNIVARIATE graphics for some of the analyses we have seen.   

Note that the first plot is similar to “d” above (presence of outlier) but is in the opposite direction.   

PROC UNIVARIATE plots for fluid breakdown experiment – untransformed data  
Tests for Normality 
Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W     0.615009    Pr < W     <0.0001 
Kolmogorov-Smirnov    D     0.248565    Pr > D     <0.0100 
Cramer-von Mises      W-Sq  1.204042    Pr > W-Sq  <0.0050 
Anderson-Darling      A-Sq  6.998223    Pr > A-Sq  <0.0050 
 
The UNIVARIATE Procedure 
Variable:  resid 
 
   Stem Leaf                        #  Boxplot                        Normal Probability Plot 
     18 4                           1     *        1850+                                                 * 
     17                                                | 
     16                                                | 
     15                                                | 
     14                                                | 
     13                                                | 
     12                                                | 
     11 0                           1     *            | 
     10                                                |                                             * 
      9                                                | 
      8                                                | 
      7                                                |                                                 ++ 
      6 9                           1     *            |                                           *  +++ 
      5                                                |                                          ++++ 
      4                                                |                                       +++ 
      3                                                |                                    +++ 
      2                                                |                                ++++ 
      1 66666777                    8     |            |                             +++    ***** * 
      0 256666666666666678         18  +--+--+         |                         +++******** 
     -0 98776555555555544442221    23  *-----*         |                    ********* 
     -1 6666665543321              13  +-----+         |               ******+ 
     -2 776555422                   9     |            |       ** *****++++ 
     -3 1                           1     |            |     *      +++ 
     -4 8                           1     0        -450+ *       +++ 
        ----+----+----+----+---                         +----+----+----+----+----+----+----+----+----+----+ 
    Multiply Stem.Leaf by 10**+2                            -2        -1         0        +1        +2 

 

PROC UNIVARIATE plots for fluid breakdown experiment – transformed data  
Tests for Normality 
Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W     0.956759    Pr < W      0.0112 
Kolmogorov-Smirnov    D      0.10799    Pr > D      0.0267 
Cramer-von Mises      W-Sq   0.11647    Pr > W-Sq   0.0699 
Anderson-Darling      A-Sq  0.834933    Pr > A-Sq   0.0311 
 
The UNIVARIATE Procedure 
Variable:  resid 
 
   Stem Leaf                     #  Boxplot                        Normal Probability Plot 
      2 567                      3     |        2.75+                                          +*+*   * 
      2 02                       2     |            |                                      ++++* 
      1 5678888999              10     |            |                                  ******* 
      1 0222334                  7  +-----+         |                               ***+ 
      0 66778                    5  |     |         |                             *** 
      0 00000123334444          14  *--+--*         |                        ****** 
     -0 4432211100              10  |     |         |                     **** 
     -0 9777776665              10  +-----+    -0.75+                 ****+ 
     -1 442                      3     |            |               **++ 
     -1 7777                     4     |            |            **** 
     -2 10                       2     |            |         ++*+ 
     -2                                |            |      +++  * 
     -3 410                      3     |            |   +++  * * 
     -3 6                        1     0            |+++    * 
     -4 00                       2     0       -4.25+ *   * 
        ----+----+----+----+                         +----+----+----+----+----+----+----+----+----+----+ 
                                                         -2        -1         0        +1        +2 

The graphics above show no clear indication of problems.  
 
 


