Chapter 8 (More on Assumptions for the Simple Linear Regression)

Chapter 8 covers the assumptions behind the SLR, and some alternative models that can be used. One of those alternatives involves the use of transformations to fit data that does not form a straight line when plotted.

Examples of curves: The exponential model (exponential growth and decay or mortality model)

$$
Y_{i}=b_{0} \exp ^{b_{1} x_{i}} e_{i}
$$

Exponential growth and decay

Decreasing line: $\mathrm{b}_{0}=34, \mathrm{~b}_{1}=-0.953, \mathrm{e}^{\mathrm{b} 1}=0.909$
Increasing line: $\mathrm{b}_{0}=2, \mathrm{~b}_{1}=+0.953, \mathrm{e}^{\mathrm{b} 1}=1.1$
For this model the raw data should actually appear non-homogeneous

The equation is $Y_{i}=b_{0} \exp ^{b_{1} X_{i}} e_{i}$, taking logs we get $\ln \left(Y_{i}\right)=\ln \left(b_{0}\right)+b_{1} X_{i}+\ln \left(e_{i}\right)$. This is a simple linear regression where the dependent variable is $\ln \left(\mathrm{Y}_{\mathrm{i}}\right)$ and the independent variable is X_{i}. Once fitted the estimated slope is equal to b_{1}. The estimated intercept is $\ln \left(\mathrm{b}_{0}\right)$ and the antilog must be taken to get back to the original equation ($\left.Y_{i}=b_{0} \exp ^{b_{1} X_{i}} e_{i}\right)$.

When fitted in SAS the model would be "MODEL LY = X;" where LY is the \log of the Y variable and X is the unaltered X variable. These transformations must be done in the data step; they cannot be done in the proc step.

When the model is fitted on the log transformed data all of the usual assumptions apply. However, they apply to the log transformed version of the data, not to the raw data. Also, all tests of hypothesis and confidence intervals must be done on the log transformed data. Once all estimates of parameters, predicted values and confidence intervals are done they can be detransformed. Standard errors cannot be detransformed, so any estimates and confidence intervals must be done on the log transformed data.

In general, when the dependent variable, Y , is transformed the homogeneity is altered. If only the independent variable, X , is altered then the homogeneity is unchanged.

Another examples of curves: The power model

Values of b_{0} and $b_{1}:(29,-1),(19,0),(4,0.5),(1,1),(0.03,2)$
For this model the raw data should appear non-homogeneous
The equation is $Y_{i}=b_{0} x_{i} b_{1} e_{i}$, taking logs we get $\ln \left(Y_{i}\right)=\ln \left(b_{0}\right)+b_{1} \ln \left(X_{i}\right)+\ln \left(e_{i}\right)$. This is a simple linear regression where the dependent variable is $\ln \left(\mathrm{Y}_{\mathrm{i}}\right)$ and the independent variable is $\ln \left(\mathrm{X}_{\mathrm{i}}\right)$. Once fitted the estimated slope is equal to b_{1}. The estimated intercept is $\ln \left(\mathrm{b}_{0}\right)$ and the antilog must be taken to get back to the original equation ($\left.Y_{i}=b_{0} \exp ^{b_{1} X_{i}} e_{i}\right)$.

When fitted in SAS the model would be "MODEL LY = LX;" where LY is the log of the Y variable and LX is the \log of the X variable. These transformations must be done in the data step; they cannot be done in the proc step.

Many other transformed models exist. While logarithmic transformations are common, inverse transformations and root transformations are also used. An example of an inverse transformation fitting a hyperbola is given below $\left(\mathrm{Y}_{\mathrm{i}}=\mathrm{b}_{0}+\mathrm{b}_{1} \frac{1}{\mathrm{X}_{\mathrm{i}}}+\mathrm{e}_{\mathrm{i}}\right)$.

The example offered in your books is of the power model type above. In this example biologists have noted a possible relationship between the size of an island and the number of species of animals and plants on that island. The data in this example are for reptile and amphibian species on seven islands in the West Indies. Results for this analysis are given below.

Obs	AREA	SPECIES	Name
1	44218	100	Cuba
2	29371	108	Hispaniola
3	4244	45	Jamaica
4	3435	53	Puerto Rico
5	32	16	Monserrat
6	5	11	Saba
7	1	7	Redonda

According to the biologists the "relation" between species and islands is given by the formula $\operatorname{Median}\{\mathrm{S} \mid \mathrm{A}\}=\mathrm{CA}^{\gamma}$. If this model is fitted using logs we have $\log (\operatorname{Median}\{\mathrm{S} \mid \mathrm{A}\})=\log (\mathrm{C})+$ $\gamma^{*} \log (\mathrm{~A})$. When estimated with SAS we get estimates of $\log (\mathrm{C})=1.93651$ and $\gamma=0.24968$. Lower and upper limits of the confidence interval on the parameter γ are 0.21856 and 0.28080 , respectively.

This model is used for many other purposes. In instrument standardization, where two instruments are compared for readings on a range of standards this model is often used. If the two instruments match perfectly the model, $\mathrm{Y}=\mathrm{b}_{0} \mathrm{X}^{\mathrm{b1}}$ becomes $\mathrm{Y}=\mathrm{X}$ where $\mathrm{b}_{0}=1$ and $\mathrm{b}_{1}=1$. Note that this model always goes through the intercept, so when $\mathrm{X}=0$ then $\mathrm{Y}=0$.
This model is also used for fitting morphometric relationships in the biological sciences. These are relationships between the body parts of organism. For example, in various studies biologists will use total length or thoracic length to measure shrimp, or total length or fork length to measure fish. Subsequently, conversion formulas are needed to compare across studies. Paleontologists predict the size of dinosaurs from a few bones because the relationship between total size and selected bones, say the femur, is known for similar animals. A related use is the prediction of body mass from linear measurements. When comparing linear measurements with the equation $\mathrm{Y}=\mathrm{b}_{0} \mathrm{X}^{\mathrm{b} 1}$, the power term $\left(\mathrm{b}_{1}\right)$ is expected to be 1 , relating cm to cm . However, for body mass, relating gm to cm we expect the power term to be approximately 3 , since gm must be related to cm^{3}.

```
1
2
3
4
5
6
7
8 dm'log;clear;output;clear';
9
        options nodate nocenter nonumber ps=512 ls=99 nolabel;
        ODS HTML style=minimal rs=none
    ! body='C:\Geaghan\Current\EXST3201\Fall2005\SAS\IsleSpecies01.html' ;
NOTE: Writing HTML Body file: C:\Geaghan\Current\EXST3201\Fall2005\SAS\IsleSpecies01.html
11
12 Title1 'Chapter 8: Correlation between the size of an island and the number of species'
12 ! ;
13
13
14
15
16
17
18
19
20
21
NOTE: The infile INPUT1 is:
    File Name=c:\Geaghan\Current\EXST3201\Datasets\ASCII\case0801.csv,
    RECFM=V, LRECL=256
NOTE: }7\mathrm{ records were read from the infile INPUT1.
    The minimum record length was 3.
    The maximum record length was }9
NOTE: The data set WORK.ISLANDS has 7 observations and 4 variables.
NOTE: DATA statement used (Total process time):
    real time 0.03 seconds
    cpu time 0.03 seconds
        run;
        Title2 'Raw data listing';
        proc print data=Islands; run;
NOTE: There were 7 observations read from the data set WORK.ISLANDS.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
```

Chapter 8 : Correlation between the size of an island and the number of species Raw data listing

Obs	AREA	SPECIES	LArea	LSPECIES
1	44218	100	10.6969	4.60517
2	29371	108	10.2878	4.68213
3	4244	45	8.3533	3.80666
4	3435	53	8.1418	3.97029
5	32	16	3.4657	2.77259
6	5	11	1.6094	2.39790
7	1	7	0.0000	1.94591

```
27 options ps=52 ls=111;
28
29
30
NOTE: There were 7 observations read from the data set WORK.ISLANDS.
NOTE: The PROCEDURE PLOT printed page 2.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.00 seconds
    cpu time 0.00 seconds
    proc plot data=Islands; plot LSPECIES * LAREA; run;
    options ps=512 ls=99;
32
NOTE: There were 7 observations read from the data set WORK.ISLANDS.
NOTE: The PROCEDURE PLOT printed page 3.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.00 seconds
    cpu time 0.00 seconds
```

Chapter 8 : Correlation between the size of an island and the number of species Scatter plot of the taw data

```
Plot of SPECIES*AREA. Legend: A = 1 obs, B = 2 obs, etc.
```



```
34
35 36
37
38
39
40
NOTE: The data set WORK.NEXT1 has 7 observations and 6 variables.
NOTE: The PROCEDURE REG printed page 4.
NOTE: PROCEDURE REG used (Total process time): real time 0.03 seconds cpu time 0.03 seconds
proc print data=next1; run;
41
NOTE: There were 7 observations read from the data set WORK.NEXT1.
NOTE: The PROCEDURE PRINT printed page 5.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
Title2 'Regression without transformed values';
proc reg data=Islands;
model LSPECIES = LAREA / CLB;
output out=next1 r=resid \(p=y h a t\);
run;
Title3 'Listing of results from the regression output statement';
reutime
```

Chapter 8 : Correlation between the size of an island and the number of species Regression without transformed values

The REG Procedure
Model: MODEL1
Dependent Variable: LSPECIES
$\begin{array}{ll}\text { Number of Observations Read } & 7 \\ \text { Number of Observations Used } & 7\end{array}$

Analysis of Variance							
			Sum of	Mean			
Source		DF	Squares	Square	F Value	Pr > F	
Model		1	6.99619	6.99619	425.30	<. 0001	
Error		5	0.08225	0.01645			
Corrected	Total	6	7.07844				
Root MSE		0.12826	R -Square	0.9884			
Dependent	Mean	3.45438	Adj R-Sq	0.9861			
Coeff Var		3.71289					
		Parameter	Parameter Estimates Standard				
Variable	DF	Estimate	Error t Value	Pr > \|t		95\% Confidence	Limits
Intercept	1	1.93651	$0.08813 \quad 21.97$	<. 0001	1.70996	2.16306	
LArea	1	0.24968	0.01211 20.62	<. 0001	0.21856	0.28080	

Chapter 8 : Correlation between the size of an island and the number of species Regression without transformed values
Listing of results from the regression output statement

Obs	AREA	SPECIES	LArea	LSPECIES	yhat	resid
1	44218	100	10.6969	4.60517	4.60731	-0.00214
2	29371	108	10.2878	4.68213	4.50516	0.17698
3	4244	45	8.3533	3.80666	4.02215	-0.21549
4	3435	53	8.1418	3.97029	3.96935	0.00095
5	32	16	3.4657	2.77259	2.80183	-0.02924
6	5	11	1.6094	2.39790	2.33835	0.05954
7	1	7	0.0000	1.94591	1.93651	0.00940

The original equation is then $\operatorname{Median}\{\mathrm{S} \mid \mathrm{A}\}=\mathrm{CA}^{\gamma}=\exp (1.93651) \mathrm{A}^{0.24968}=6.935 * \mathrm{~A}^{0.250}$. When plotted this should form a curve

A brochure for the Intel Corporation, a major producer of computer processor chips, contains information about the history of it's chips. The table below was derived from that information.

Processor	Year of introduction	Number of Transistors (x1000)	Logarithm of No. of Transistors	Approx. MIPS (million instructions per second)
4004	1971	2.3	0.83	0.04
8080	1974	9	2.2	0.16
8086	1978	20	3	0.36
8088	1979	29	3.37	0.53
80286	1982	134	4.9	2.44
80386	1985	275	5.62	5
80486	1989	1200	7.09	21.82
Pentium (5)	1993	3000	8.01	54.55
Pentium Pro (6)	1995	5500	8.61	100

The first plot below is a plot of the data with an "exponential growth curve" graphed through the data. This appears to be a pretty good fit.

Below is a plot of the relationship between the independent variable "year of introduction" and the dependent variable plotted on a logarithmic scale (log 10 in this case) This fit also looks pretty good.

This same effect can be achieved by taking logarithms of the variable instead of plotting on a log scale. That graph, with natural logs, is given below.

This is the linear version of the exponential curve, and as you can see it is a simple linear regression. This data was regressed in SAS using PROC REG and the data is given in in separate pages. Answer
the questions below from that computer output. Note that the intercept is meaningless in this particular example because there were no computers in the year "0000".
In 1965 Gordon Moore (a co-founder of Intel)) wrote an article that claimed that the rate of increase in computer capacity double every 18 months. On our logarithmic scale this translates into a rate of 0.462 $\operatorname{logTRANS}$ per year. This value was tested and rejected ($\mathrm{P}>\mathrm{F}<0.0001$)

This doubling rate can be easily calculated. The curve is of the "exponential growth" type, $Y_{i}=b_{0} \exp ^{b_{1} X_{i}} e_{i}$. For this model the value of b_{0} is the "initial value" and the value of b_{1} is the instantaneous rate of increase. The doubling time is calculated as

$$
\begin{aligned}
& Y_{i}=b_{0} e^{b_{1} x_{i}}=\left(1.5254^{*} 10^{-275}\right) e^{0.32150^{*} \text { year }} \\
& 2 b_{0}=b_{0} e^{b_{1} \text { (doubling time) }}=3.0508 \mathrm{E}-275=\left(1.5254^{*} 10^{-275}\right) \mathrm{e}^{0.32150 \text { (doubling time) }} \\
& 2=\mathrm{e}^{0.32150(\text { doubling time) })} \text { and } \ln (2)=0.32150 *(\text { doubling time }) \text { then } \\
& \text { doubling time }=\ln (2) / 0.32150=2.155978789
\end{aligned} .
$$

The annual rate is $\mathrm{e}^{0.32150}=1.379195006$, or about 38% per year, but this rate is "compounded" continously.
This model is used to describe the growth (positive b_{1}) of biological organisms and populations, growth in technology, and anything that grows proportionally, such as interest in the bank.

It is also used extensively in biology to describe various types of mortality (negative b_{1}) and types of decay for both biological material and radioactive material. Half lives are calculated in a fashion similar to the doubling time above.

```
1
2
3
NOTE: Writing HTML Body file: C:\Geaghan\Current\EXST3201\Fall2005\SAS\Intel01.html
1 1
12
OPTIONS LS=111 PS=256 NODATE NOCENTER NONUMBER;
DATA Intel; INFILE CARDS MISSOVER; LENGTH CHIP $ 16;
    TITLE1 'Data from Intel Corporation';
    TITLE2 'Increasing power of Intel computer processor chips over years';
            INPUT CHIP $ 1-16 YEAR TRANS;
                logTRANS = log(TRANS);
                LABEL YEAR = 'Year of microchip introduction';
                LABEL TRANS = 'Equivalent power of chip in 1000 transistors';
                MIPS = trans * 0.01818181818;
CARDS;
NOTE: The data set WORK.INTEL has 12 observations and 5 variables.
NOTE: DATA statement used (Total process time):
    real time 0.03 seconds
    cpu time 0.03 seconds
34
35
NOTE: There were 12 observations read from the data set WORK.INTEL.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
```

Data from Intel Corporation
Increasing power of Intel computer processor chips over years
Raw data Listing

			\log		
Obs	CHIP	YEAR	TRANS	TRANS	MIPS
1	4004	1971	2.3	0.8329	0.042
2	8008	1972	2.5	0.9163	0.045
3	8080	1974	4.5	1.5041	0.082
4	8086	1978	29.0	3.3673	0.527
5	80286	1982	134.0	4.8978	2.436
6	80386	1985	275.0	5.6168	5.000
7	80486	1989	1200.0	7.0901	21.818
8	Pentium (5)	1993	3100.0	8.0392	56.364
9	Pentium Pro (6)	1995	5500.0	8.6125	100.000
10	Pentium II	1997	7500.0	8.9227	136.364
11	Pentium III	1999	9500.0	9.1590	172.727
12	Pentium 4	2000	42000.0	10.6454	763.636

```
37 options ps=52 ls=111;
38 proc plot data=intel; plot trans * year; TITLE3 'Plot of the raw data'; run;
NOTE: There were 12 observations read from the data set WORK.INTEL.
NOTE: The PROCEDURE PLOT printed page 2.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.00 seconds
    cpu time 0.00 seconds
39 proc plot data=intel; plot logtrans * year;
    TITLE3 'Plot of the log transformed data'; run;
4 0
41 options ps=512 ls=111;
NOTE: There were 12 observations read from the data set WORK.INTEL.
NOTE: The PROCEDURE PLOT printed page 3.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.00 seconds
    cpu time 0.00 seconds
```

Data from Intel Corporation
Increasing power of Intel computer processor chips over years
Plot of the raw data
Plot of TRANS*YEAR. Legend: $\mathrm{A}=1$ obs, $\mathrm{B}=2$ obs, etc.

Data from Intel Corporation
Increasing power of Intel computer processor chips over years
Plot of the log transformed data
Plot of logTRANS*YEAR. Legend: $A=1$ obs, $B=2$ obs, etc.

42
43
NOTE: The data set WORK.NEXT has 12 observations and 6 variables.
NOTE: The PROCEDURE REG printed pages 4-6.
NOTE: PROCEDURE REG used (Total process time):
real time 0.04 seconds
cpu time 0.04 seconds
PROC REG DATA=Intel lineprinter; ID YEAR;
TITLE3 'Computer Chip example using REG with CLM';
MODEL logTRANS = YEAR / CLI CLM CLB;
TEST YEAR=0.462;
output out=next r=resid;
RUN;
! OPTIONS PS=45;

Output Statistics									
Obs	YEAR	Variable	Value	Mean Predict	95\%	CL Mean	95\% CL	Predict	Residual
1	1971	0.8329	0.8974	0.2028	0.4455	1.3493	-0.0878	1.8826	-0.0645
2	1972	0.9163	1.2189	0.1938	0.7872	1.6506	0.2427	2.1950	-0.3026
3	1974	1.5041	1.8619	0.1764	1.4689	2.2549	0.9023	2.8215	-0.3578
4	1978	3.3673	3.1479	0.1454	2.8240	3.4719	2.2144	4.0814	0.2194
5	1982	4.8978	4.4339	0.1227	4.1605	4.7074	3.5168	5.3511	0.4639
6	1985	5.6168	5.3985	0.1143	5.1439	5.6530	4.4867	6.3102	0.2183
7	1989	7.0901	6.6845	0.1174	6.4229	6.9461	5.7707	7.5982	0.4056
8	1993	8.0392	7.9705	0.1357	7.6682	8.2728	7.0443	8.8967	0.0687
9	1995	8.6125	8.6135	0.1489	8.2817	8.9453	7.6773	9.5497	-0.001002
10	1997	8.9227	9.2565	0.1640	8.8910	9.6220	8.3078	10.2052	-0.3339
11	1999	9.1590	9.8995	0.1806	9.4971	10.3020	8.9360	10.8631	-0.7405
12	2000	10.6454	10.2210	0.1893	9.7992	10.6429	9.2492	11.1928	0.4244
Sum	of Resi	duals		-5.6503E-13					
Sum	Squared Residuals			1.54386					
Pre	icted R	sidual S	(PRESS)	2.30901					

Test 1 Results for Dependent Variable logTRANS
Mean

Source	DF	Square	F Value	Pr $>$ F
Numerator	1	25.07333	162.41	$<.0001$
Denominator	10	0.15439		

```
48 TITLE3 'Plot of residuals';
4 9
Proc plot; PLOT resid*YEAR / vref=0;
RUN;
50
NOTE: There were 12 observations read from the data set WORK.NEXT.
NOTE: The PROCEDURE PLOT printed page 7.
NOTE: PROCEDURE PLOT used (Total process time):
    real time 0.01 seconds
    cpu time 0.00 seconds
                PROC UNIVARIATE DATA=NEXT NORMAL PLOT; VAR resid;
52 RUN;
NOTE: The PROCEDURE UNIVARIATE printed pages 8-10.
NOTE: PROCEDURE UNIVARIATE used (Total process time):
    real time 0.01 seconds
    cpu time 0.01 seconds
Data from Intel Corporation
Increasing power of Intel computer processor chips over years Plots of raw data \& residuals
```


Data from Intel Corporation
Increasing power of Intel computer processor chips over years
Plots of raw data \& residuals
The UNIVARIATE Procedure
Variable: resid

	Moments		
N	12	Sum Weights	12
Mean	0	Sum Observations	0
Std Deviation	0.37463418	Variance	0.14035077
Skewness	-0.5243539	Kurtosis	-0.4472994
Uncorrected SS	1.54385842	Corrected SS	1.54385842
Coeff Variation	. Std Error Mean	0.10814757	

Basic Statistical Measures
Location

Mean	0.000000	Std Deviation	0.37463
Median	0.033830	Variance	0.14035
Mode	\cdot	Range	1.20437
		Interquartile Range	0.63072

Tests for Location: Mu0=0

Test	Statistic-	$----p$ Value------		
Student's t	t	0	$\mathrm{Pr}>\|\mathrm{t}\|$	1.0000
Sign	M	0	$\operatorname{Pr}>=\|M\|$	1.0000
Signed Rank	S	3	$\operatorname{Pr}>=\|S\|$	0.8501

Tests for Normality
Test
Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling

- Statistic---		$----p$	Value-----
W	0.939064	Pr $<$ W	0.4860
D	0.136633	Pr $>$ D	>0.1500
W-Sq	0.040599	Pr $>$ W-Sq	>0.2500
A-Sq	0.292949	Pr $>$ A-Sq	>0.2500

Extreme Observations

------ Lowest--------Highest----	Value	Obs	
Value	Obs	0.218314	6
-0.7404772	11	0.219373	4
-0.3578260	3	0.405601	7
-0.3338563	10	0.424396	12
-0.3026030	2	0.463898	5
-0.0644798	1		

