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Linear combinations  
A linear combination consists of a series of variables multiplied by constants.  For a series of k variables 

the linear combination could be expressed as follows.   

  Generic linear combination: 1 1 2 2 ... k kW a W a W a W= + + +  

The concern in Chapter 6 is for linear combinations of group means.  This is expressed as follows.   

 For parameters, 
1 2 31 2 3 ...

kkY Y Y Yc c c cλ µ µ µ µ= + + + +  

  For statistics, 1 1 2 2 3 3 ... k kg c Y c Y c Y c Y= + + + +   

The variance for a linear combination is given as the sum of the variances of the variables in the linear 
combination plus twice the covariances.   
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An important aspect of this calculation is that if the variables are independent, which is usually the case 
in Analysis of Variance, the covariances can be assumed to be zero.  The variance of the linear 
combination is then the sum of the variances multiplied by the squares of the coefficients.   

We have already seen one example of a linear combination in the t-test.  The linear combination 
estimated for the t-test is 1 1 2 2

ˆ c Y c Yδ = + , where c1 = 1 and c2 = –1.  Usually we are testing the null 
hypothesis 0 1 2 0: 0 or : 0.H Y Y H δ− = =   The variance for this linear combination is the sum of the 
variances of the means.  We will assume the two groups are sampled independently and have no 
covariance.  The variance for a mean is s2/n, so the variance of this linear combination is the 

variance of the difference 1 2Y Y−  which is 
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divided by the standard error which is 
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= , where δ is zero for 0 : 0.H δ =  

In Analysis of Variance there are more means than for the t-test.  Assuming the “t” treatment levels in 
ANOVA are independent, the linear combination and variance is as follows.   

  1 1 2 2 3 3 ... t tg c Y c Y c Y c Y= + + + +  
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There are a few variations on this formula which are used when the variances are equal and can be 
pooled, or when the analysis is “balanced” and the ni are equal.  If the variances are equal they can 
be pooled into an estimate of a single variance given by 
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.  The variance is then calculated as 
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Before doing the linear contrasts, we should determine if the variances can be pooled or not.  Although 
PROC GLM has some HOV (homogeneity of variance) tests, it has no capability of dealing with 
non-homogeneous variance if it is detected.  PROC MIXED has a method of testing for HOV and 
can deal with non-homogeneous variance if detected.   The original PROC MIXED model we ran 
was:   

proc mixed data=MiceDiet cl covtest;  
   Title2 'Analysis of Variance with PROC MIXED'; 
   class diet;  
   model lifetime = diet; 
run; 

 
To test for homogeneity of variance we add the statement “repeated / group=diet;”.  This analysis is not 

a “repeated measures” analysis, but the “group=diet” option on this statement will cause PROC 
MIXED to fit separate variances to the variables specified in the group= option.  In this case the 
variable is our treatment variable “diet”.   

proc mixed data=MiceDiet cl covtest;  
   Title2 'Testing homogeniety of Variance with PROC MIXED'; 
   class diet;  
   model lifetime = diet / ddfm=kr; 
   repeated / group=diet; 
run; 

 
I have added one other modification to the program, the option “/ ddfm=kr” requests the Kenward-

Rogers approach for handling denominator degrees of freedom.  Other options are available, 
including the Satterthwaithe options used in the two sample t-test.  However, this one appears to be 
the best for ANOVA situations.   

The results of this test of homogeneity are given in the printed output.  Note in particular that each diet 
now has it’s own estimate of variance.   

Covariance Parameter Estimates 
                                       Standard         Z 
Cov Parm     Group         Estimate       Error     Value        Pr Z     Alpha       Lower       Upper 
Residual     DIET N/N85     26.2687      4.9643      5.29      <.0001      0.05     18.7234     39.5319 
Residual     DIET N/R40     44.9356      8.2733      5.43      <.0001      0.05     32.2855     66.8452 
Residual     DIET N/R50     60.3448     10.2001      5.92      <.0001      0.05     44.4538     86.6356 
Residual     DIET NP        37.6223      7.6796      4.90      <.0001      0.05     26.1635     58.7189 
Residual     DIET R/R50     44.6645      8.5172      5.24      <.0001      0.05     31.7464     67.4911 
Residual     DIET lopro     48.8838      9.3218      5.24      <.0001      0.05     34.7453     73.8667 
 

Also note that there is a new, separate test called the “Null Model Likelihood Ratio Test”.  This sections 
tests the model with separate variance as a full model (6 variances estimated at 1 d.f. each) against a 
reduced model with homogeneous variance (a single variance requiring only 1 d.f.).  The test is for 
the 5 d.f. difference in the two models.   

Null Model Likelihood Ratio Test 
    DF    Chi-Square      Pr > ChiSq 
     5         11.07          0.0500 
 
In this case we would conclude ?a difference?.  Very close, but we would conclude a difference exists 

among the variances.  Recall that when we did the 5 t-tests we detected 4 with the same variance 
and one with different variances.  Overall there appears to be a difference, marginal maybe, but a 
difference.   
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Linear combinations can be used to test specific hypotheses about the treatments using what are called 
“contrasts”.  Contrasts are easily set up in SAS.  For example, in out first example (mouse diets) we 
tested 5 specific hypotheses:  N/N85 versus N/R50, N/R50 versus R/R50, N/R40 versus N/R50, 
N/R50 versus lopro and N/N85 versus NP.  These could have been done as contrasts in an ANOVA.   

 
First the ANOVA, done in PROC GLM or PROC MIXED.  We will use MIXED because it will also 

allow us to test for equal variances.  Once we determine if we are justified in pooling the variances 
we proceed with our contrasts.  Note that in PROC MIXED we can work with unequal variances, in 
PROC GLM we cannot.   

 

Writing contrasts in SAS:   

We want to test the linear contrast 1 1 2 2 3 3 ... t tg c Y c Y c Y c Y= + + + +  using either the variance 
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.  The SAS program 

keeps track of the S2 values and the ni values.  All we need to do is determine what contrasts we 
want to do, and specify the values of ci.  This would be done as follows:   

From the SAS section titled “Class Level Information” given in both GLM and MIXED we determine 
the order of the variables stored by SAS.  This order will usually be alphanumeric, and for out 
example is [N/N85 N/R40 N/R50 NP R/R50 lopro]. 

Class Level Information 
Class    Levels    Values 
DIET          6    N/N85 N/R40 N/R50 NP R/R50 lopro 

 

Now we need to determine what contrasts will test the hypotheses of interest.  The hypotheses of interest 
were [N/N85 versus N/R50, N/R50 versus R/R50, N/R40 versus N/R50, N/R50 versus lopro and 
N/N85 versus NP].   In order to do the first test in our linear contrast we would need the following 
coefficients or “multipliers”.  1 N/N85 2 N/R40 3 N/R50 4 NP 5 R/R50 6 loprog c Y c Y c Y c Y c Y c Y= + + + + + .  In order to 
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test N/N85 N/R40: 0oH Y Y− =  we need multiplier 1 to equal 1, multiplier 2 to equal  –1, and all other 
multipliers to equal 0.    

Test Hypothesis µ1 = µ 2 N/N85 N/R40 N/R50 NP R/R50 lopro 

A N/N85 = N/R50 1 0 –1 0 0 0 

B N/R50 = R/R50 0 0 1 0 –1 0 

C N/R40 = N/R50 0 1 –1 0 0 0 

D N/R50 = lopro 0 0 1 0 0 –1 

E N/N85 = NP 1 0 0 –1 0 0 
In practice, for testing purposes, it is not important if we calculate N/N85 N/R40Y Y−  or N/R40 N/N85Y Y− , the 

result is the same.  Therefore, which treatment gets the “1” and which gets “–1” is not important.   

These contrasts are set up is SAS in “contrast statements”.  The first statement below is a comment I 
created to keep track of the treatments and the order in which they occur.  The other 5 statements 
are contrasts.  A contrast starts with the word “contrast” followed by a description of up to 16 
characters in single quotes.  After the description comes the name of the group or treatment variable 
followed by the contrast.  When writing contrasts I usually put the negative first, but this is not 
important.   

  *** diet treatments              N/N85 N/R40 N/R50 NP R/R50 lopro;  
   contrast 'A: N/N85 N/R50' diet     -1    0    1    0    0     0;  
   contrast 'B: N/R50 R/R50' diet      0    0   -1    0    1     0;  
   contrast 'C: N/R40 N/R50' diet      0   -1    1    0    0     0;  
   contrast 'D: N/R50 lopro' diet      0    0   -1    0    0     1;  
   contrast 'E: N/N85 NP'    diet     -1    0    0    1    0     0;  
 
The results are given in the output.   

Contrasts 
                   Num     Den 
Label               DF      DF    F Value    Pr > F 
A: N/N85 N/R50       1     122      70.40    <.0001 
B: N/R50 R/R50       1     124       0.21    0.6474 
C: N/R40 N/R50       1     129       4.97    0.0275 
D: N/R50 lopro       1     123       3.96    0.0489 
E: N/N85 NP          1    93.9      22.77    <.0001 
 

Comparison of the t-test results with the ANOVA results.   

Test Hypothesis µ1 = µ 2 Means P > |t|
 (unpooled)

P > |t| 
(pooled) 

P > |t|
ANOVA

A N/N85 = N/R50 32.691, 42.297 <0.0001 <0.0001 <0.0001
B N/R50 = R/R50 42.297, 42.886 0.6474 0.6532 0.6472
C N/R40 = N/R50 45.117, 42.297 0.0275 0.0294 0.0275
D N/R50 = lopro 42.297, 39.686 0.0489 0.0516 0.0489
E N/N85 = NP 32.691, 27.402 <0.0001 <0.0001 <0.0001

Which is better, t-tests of ANOVA?  One big advantage to ANOVA is that if the variances can be 
pooled the combined variance is better and has more d.f. for testing.   In this case we could not pool, 



EXST3201 –Chapter 6 Geaghan Fall 2005: Page 5 

but the ANOVA in PROC MIXED can still handle this situation.  In those cases where pooling is 
justified the tests have increased power.   

In the mouse diet example the contrasts were clear.  The contrasts were relatively simple “pairwise” 
contrasts.  However, other contrasts are possible.   

If we wanted to contrast N/N85 to the average of both N/R40 and N/R50 we would need to calculate 
N/R40 N/R50

0 N/N85: 0
2

Y YH Y +
− = .  This can be simplified by multiplying through by 2, giving 

0 N/N85 N/R40 N/R50: 2 ( ) 0H Y Y Y− + = .   

Similarly, if we wanted to compare the treatment lopro to the mean of all other treatments we could 

calculate N/N85 N/R40 N/R50 NP R/R50
0 lopro: 0

5
Y Y Y Y YH Y+ + + +

− =  or multiply through by 5 to get 

0 N/N85 N/R40 N/R50 NP R/R50 lopro: 5 0H Y Y Y Y Y Y+ + + + − = .   

NP and N/N85 versus all other treatments would test the hypothesis 
N/R40 N/R50 R/R50 loproN/N85 NP

0 : 0
2 4

Y Y Y YY YH
+ + ++

− = and would simplify to 

0 N/N85 NP N/R40 N/R50 R/R50 lopro: 2 2 ( ) 0H Y Y Y Y Y Y+ − + + + =   

and the hypothesis NP and N/N85 versus N/R40, N/R50 and R/R50 can be expressed as either 
N/N85 NP N/R40 N/R50 R/R50

0 : 0
2 3

Y Y Y Y YH + + +
− = and would simplify to 

0 N/N85 NP N/R40 N/R50 R/R50: 3 3 (2 2 2 ) 0H Y Y Y Y Y+ − + + = .   

These contrasts are expressed below and done with PROC MIXED.   

Alternative hypotheses N/N85 N/R40 N/R50 NP R/R50 lopro SUM 

1) N/N85 versus N/R40 
and N/R50 –1 0.5 0.5 0 0 0 0 

2) N/N85 versus N/R40 
and N/R50 –2 1 1 0 0 0 0 

3) lopro versus all others 0.2 0.2 0.2 0.2 0.2 –1 0 

4) lopro versus all others 1 1 1 1 1 –5 0 

5) NP and N/N85 versus 
all other treatments –0.5 0.25 0.25 –0.5 0.25 0.25 0 

6) NP and N/N85 versus 
all other treatments –2 1 1 –2 1 1 0 

7) NP and N/N85 versus 
N/R40, N/R50 and R/R50 –0.5 0.333 0.333 –0.5 0.333 0 0 

8) NP and N/N85 versus 
N/R40, N/R50 and R/R50 –3 2 2 –3 2 0 0 

 



EXST3201 –Chapter 6 Geaghan Fall 2005: Page 6 

Note that all contrasts must sum to one (1).  The contrasts above all appear to sum to 1.  When run we 
achieve the following results.   

Contrasts 
 
          Num     Den 
Label      DF      DF    F Value    Pr > F 
 
1           1     147     141.01    <.0001 
2           1     147     141.01    <.0001 
3           1    74.4       2.54    0.1154 
4           1    74.4       2.54    0.1154 
5           1     221     303.02    <.0001 
6           1     221     303.02    <.0001 
7           .       .        .       . 
8           1     236     312.50    <.0001 
 

 

Additional notes on contrasts:   

1) Note that the results are identical with either the fractions or the integers (except for number 7).  Also 
note that number 7 failed.  SAS PROC MIXED produced nothing the the log indicating an error.  
PROC GLM produces the message “NOTE: CONTRAST 7 is not estimable.”.   Why can’t contrast 
7 be estimated?  
contrast '7' diet  -0.5   0.333  0.333  -0.5  0.333     0; 

The reason is that contrast 7 does not actually sum to zero.  It sums to -0.001.  SAS check this sum 
to 6 decimal places.  Generally, using integers is more precise and less prone to errors.   

2) Contrasts each have an α probability of error.  It seems that we started using ANOVA to avoid doing 
6 t-tests, each with an α probability of error.  So what have we gained?  We have gained the overall 
guarantee from the ANOVA that indeed something is significant.  Once we know this then we can 
use contrasts and other techniques.  If the ANOVA indicates that there are no significant treatment 
effects then we should not use the contrasts.   

As an additional guarantee we should keep two restrictions:  first we should not do more contrasts 
than we have degrees of freedom in the model and second we should only test a priori contrasts, not 
contrasts determined by examining the data a posteriori.   

We will soon see some other techniques more appropriate a posteriori to testing.   
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Other examples  

Recall the Spock trial judge example.  Contrasts can be written to test the Spock judge from other 
judges.  It is also possible to write joint contrasts to test multiple degree of freedom problems, such 
as the test among other judges in the Spock trial.  These can be done in both PROC MIXED and 
PROC GLM.  However, PROC MIXED does not produce SS for comparison to our EXTRA SS 
calculations.  PROC GLM is used below.   

proc glm data=Jury;  
   class judge;  
   model percent = judge;  
*** judges in alphabetical order =>     A  B  C  D  E  F SPOCK; 
   contrast 'Spock vrs others'   judge  1  1  1  1  1  1   -6; 
   contrast 'Among other judges' judge -1  1  0  0  0  0    0, 
                                 judge  0 -1  1  0  0  0    0, 
                                 judge  0  0 -1  1  0  0    0, 
                                 judge  0  0  0 -1  1  0    0, 
                                 judge  0  0  0  0 -1  1    0; 
run; 
 

The results were:  
Class Level Information 
 
Class         Levels    Values 
Judge              7    A B C D E F SPOCK  
 
Number of Observations Read          46 
Number of Observations Used          46 
 
Dependent Variable: Percent    
                                        Sum of 
Source               DF         Squares     Mean Square    F Value    Pr > F 
Model                 6     1927.080772      321.180129       6.72    <.0001 
Error                39     1864.445255       47.806289                      
Corrected Total      45     3791.526027                                      
 
R-Square     Coeff Var      Root MSE    Percent Mean 
0.508260      26.01027      6.914209        26.58261 
 
Source               DF       Type I SS     Mean Square    F Value    Pr > F 
Judge                 6     1927.080772      321.180129       6.72    <.0001 
 
Source               DF     Type III SS     Mean Square    F Value    Pr > F 
Judge                 6     1927.080772      321.180129       6.72    <.0001 
 
Contrast             DF     Contrast SS     Mean Square    F Value    Pr > F 
Spock vrs others      1     1536.776942     1536.776942      32.15    <.0001 
Among other judges    5      326.457869       65.291574       1.37    0.2582 
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General Linear Hypothesis test 
Source  d.f.   SS  MS  F 
Reduced model error  44 2190.903123   
Full model error  39 1864.445222   
Difference  5 326.457901 65.291580 1.365753 
Full model error  39 1864.445222 47.806288  

 

The contrasts can do the same tests.  The contrasts here separate the Model SS (1927.080772) into two 
components, Spock versus others (1536.776942) and among other judges (326.457869).  The results 
also clearly show that the Spock judge differed from other judges and the other judges did not differ 
from one another.   

 


