Analysis of Variance [Chapter 5, part 2]

A second case of analysis of variance, the Dr. Spock conspiracy trail.

This case is an observational study, so the data does not come from a planned experiment, conducted under controlled conditions.

The claim by the defense is that the number of women (who might favor Dr. Spock) was underrepresented. In fact, his jury had no women. There were 7 U. S. District Court judges in the Boston area, including Dr. Spock's judge. The null hypothesis is that the mean number of women for the 7 judges is equal (H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$) versus the alternative (some μ_i is different).

Display 5.5 Percentages of women on venires of the seven Boston judges

Although an observational study, the analysis is the same. Using PROC MIXED and PROC GLM to do our Analysis of Variance we get the following.

Chapter 5 : Spock Conspiracy Trial Analysis of variance with PROC GLM

The GLM Procedure

	C	Class Level I	Info	orm	at:	ior	n		
Class		Levels	7	/al	ue	5			
Judge		7	I	ΑB	С	D	Ε	F	SPOCK
Number	of	Observations	s Re	ead					46
Number	of	Observations	s Us	sed					46

Dependent Variable: Percent

Geaghan

Dependente	VOT TOOT.		00110				
			Sum of				
Source		DF	Squares	Mean Square	F Va	alue	Pr > F
Model		6	1927.080865	321.180144	6	5.72	<.0001
Error		39	1864.445222	47.806288			
Corrected	Total	45	3791.526087				
R-Square	Coef	E Var	Root MSI	E Percent M	ean		
0.508260	26.0	01027	6.914209	26.58	261		
Source	DF	1	Type I SS	Mean Square	F Va	alue	Pr > F
Judge	6	192	27.080865	321.180144	6	5.72	<.0001
Source	DF	Тур	e III SS	Mean Square	F Va	alue	Pr > F
Judge	б	192	27.080865	321.180144	6	5.72	<.0001

What conclusion can be made from these results? Clearly the F value of 6.72 would be unusual under the null hypothesis, and would occur by random chance with a probability of less than one in 10,000. The null hypothesis (H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$) would be rejected for the alternative (some μ_i is different).

For these relatively simple problems both PROC MIXED and PROC GLM should give the same results.

Chapter 5 : Spock Conspiracy Trial Analysis of variance with PROC MIXED

The Mixed Procedure

Model	Information
Data Set	WORK.JURY
Dependent Variable	Percent
Covariance Structure	Diagonal
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Metho	d Residual

	Class	Level Informati	lon
Class	Levels	Values	
Judqe	7	A B C D E F SPO	CK

Dimensions

Covariance	Parameters	1
Columns in	Х	8
Columns in	Z	0
Subjects		1
Max Obs Per	Subject	46

		Number of Observations	
Number	of	Observations Read	46
Number	of	Observations Used	46
Number	of	Observations Not Used	0

Covariance Pa Cov Parm : Residual	rameter Estimate 47.8063	Estimate	25		
Fi	t Statis	tics			
-2 Res Log Lil	kelihood	L	274	.0	
AIC (smaller	is bette	er)	276	.0	
AICC (smaller	is bett	er)	276	.1	
BIC (smaller	is bette	er)	277	.6	
Туре	3 Tests	of Fixed	d Effec	ts	
	Num	Den			
Effect	DF	DF	F Valu	е	Pr > F
Judge	6	39	6.7	2	<.0001

Note that these results match those of the GLM. For some more complicated models and some other types of problems, this will not be true.

Checking the assumptions: Here, as with the first example we will examine the residuals for normality and homogeneity of variance.

First, the PROC UNIVARIATE with the BY JUDGE statement provides a plot similar to that provided by the book.

From this plot we can see box plots of the individual group members (judges). Note that there are few potential outliers and no consistent indication of skewness (mean < or > the median). Some judges seem to have relative large variability while other are smaller. This may indicate nonhomogenous variance.

The dataset below is the output from the PROC GLM OUTPUT statement. Many SAS procs have facilities for outputting results from the procedure. We had previously seen the "OUTP=somename" option on the PROC MIXED MODEL statement. The style "OUTPUT" below is more common is SAS.

44 proc glm data=Jury; 45

46

47

48

```
class judge;
   model percent = judge;
   output out=next1 r=e p=yhat;
run;
```

With this statement it is possible to specify names for key variables (keyvariable=somename). The key variable names include the following: P or PREDICTED, R or RESIDUAL, RSTUDENT, STUDENT, L95, L95M, U95 and U95M.

Chapt	er 5 : Spoc	k Conspir	acy Trial		21	24.3000	D	-2.7000	27.0000
Analy	rsis among j	udges	-		22	29.7000	D	2.7000	27.0000
Analy	sis of vari	ance with	PROC GLM		23	17.7000	Е	-9.2667	26.9667
Listi	ng of PROC	MIXED res	iduals		24	19.7000	Е	-7.2667	26.9667
					25	21.5000	Е	-5.4667	26.9667
Obs	Percent	Judge	е	yhat	26	27.9000	Е	0.9333	26.9667
1	16.8000	А	-17.3200	34.1200	27	34.8000	Е	7.8333	26.9667
2	30.8000	А	-3.3200	34.1200	28	40.2000	Е	13.2333	26.9667
3	33.6000	А	-0.5200	34.1200	29	16.5000	F	-10.3000	26.8000
4	40.5000	А	6.3800	34.1200	30	20.7000	F	-6.1000	26.8000
5	48.9000	А	14.7800	34.1200	31	23.5000	F	-3.3000	26.8000
б	27.0000	в	-6.6167	33.6167	32	26.4000	F	-0.4000	26.8000
7	28.9000	В	-4.7167	33.6167	33	26.7000	F	-0.1000	26.8000
8	32.0000	В	-1.6167	33.6167	34	29.5000	F	2.7000	26.8000
9	32.7000	В	-0.9167	33.6167	35	29.8000	F	3.0000	26.8000
10	35.5000	В	1.8833	33.6167	36	31.9000	F	5.1000	26.8000
11	45.6000	в	11.9833	33.6167	37	36.2000	F	9.4000	26.8000
12	21.0000	С	-8.1000	29.1000	38	6.4000	SPOCK 'S	-8.2222	14.6222
13	23.4000	С	-5.7000	29.1000	39	8.7000	SPOCK 'S	-5.9222	14.6222
14	27.5000	С	-1.6000	29.1000	40	13.3000	SPOCK 'S	-1.3222	14.6222
15	27.5000	С	-1.6000	29.1000	41	13.6000	SPOCK 'S	-1.0222	14.6222
16	30.5000	С	1.4000	29.1000	42	15.0000	SPOCK 'S	0.3778	14.6222
17	31.9000	С	2.8000	29.1000	43	15.2000	SPOCK 'S	0.5778	14.6222
18	32.5000	С	3.4000	29.1000	44	17.7000	SPOCK 'S	3.0778	14.6222
19	33.8000	С	4.7000	29.1000	45	18.6000	SPOCK 'S	3.9778	14.6222
20	33.8000	С	4.7000	29.1000	46	23.1000	SPOCK 'S	8.4778	14.6222
					•				

Refer to the SAS output for evaluation of the assumptions. In particular, note the following concerning assumptions.

- 1) Is the assumption of normality met?
- 2) Are there any outliers?
- 3) Is there a suggestion of non-homogeneous variance in the residuals?