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Analysis of Variance [Chapter 5] 
Testing between two samples is readily done with the two-sample t-test.  In this situation we compare 

two groups (also referred to as classes, categories, treatments or indicator variables) and use 
hypothesis testing procedures that will allow us to decide if the two samples are, statistically 
speaking, significantly different (with α probability of error) or not.   

 

See example: Mouse Diet Experiment 01(mousefeed01.sas).  Case study 5.1 from your text book.   

We want to examine differences among the following 6 treatments  

N/N85 fed normally before weaning and 85 kcal/wk after 
N/R40 fed normally before weaning an d 40 kcal/wk after 
N/R50 fed normally before weaning and 50 kcal/wk after 
NP    standard diet to satiation 
R/R50 fed a reduced diet of 50 kcal/wk before and after weaning 
lopro fed normally before weaning and 50 kcal/wk after and dietary protein decreasing with age  

The text describes 5 distinct test of interest.  These 5 tests are: N/N85 vrs NP (test e),  N/N85 vrs 
N/R50 (test a), N/R50 vrs R/R50 (test b), N/R50 vrs lopro (test d) and N/R40 vrs N/R50 
(test c).  To do this in SAS I created 5 datasets, each with the appropriate 2 groups for one of 
the tests and I ran PROC TTEST to do the tests.   
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The results of those 5 tests are as follows:  

Test Hypothesis µ1 = µ 2 Means P > |t| 
 (unpooled) 

P > |t|
(pooled)

A N/N85 = N/R50 32.691, 42.297 <0.0001 <0.0001

B N/R50 = R/R50 42.297, 42.886 0.6474 0.6532

C N/R40 = N/R50 45.117, 42.297 0.0275 0.0294

D N/R50 = lopro 42.297, 39.686 0.0489 0.0516

E N/N85 = NP 32.691, 27.402 <0.0001 <0.0001
 

According to the book, there is convincing evidence that restricting diet increases lifespan.  This is based 
on Analysis of Variance (P>F < 0.0001).  However, the individual tests are also pretty convincing.   

All diets with restrictions (R) have longer life expectancy than normal (N) diets (see test A).  The 
highest calorie restriction (85) lived longer than the unlimited calorie diet (test e).  When 
restricted (R), the lower the level of calories the longer the life expectancy (test C, calories 40 
versus 50).  Finally, even on a restricted diet (R50) life expectancy increased if dietary protein 
decreasing with age (test D).   The only test that was not significant, or near significance, was 
test B, suggesting that limiting calories before weaning was not beneficial.   

One of the tests is ambiguous (D).  We will be better able to make a decision when we have 
discussed ANOVA.   

 

Why do we need Analysis of Variance (ANOVA)?   
What happens if we have more than two groups?  If we want to compare 3 groups, we could compare 

group 1 to group 2, 2 to 3 and 1 to 3.  This is 3 tests, each with an α chance of error.  The 
probability of error is not strictly additive, but Bonferroni showed that the probability of error will 
be no more than the sum of the individual tests.  Since 0.05 + 0.05 + 0.05 = 0.15, the probability of 
error for the three tests would be a maximum of 0.15 (15%).   

For the example above the tests are among 5 means (e.g. 1 versus 2, 1 v 3, 1 v 4, 1 v 5, 2 v 3, 2 v 4, 2 v 
5, 3 v 4, 3 v 5 and 4 v 5).  This is a total of 10 tests.  The general expression for the total number of 
tests needed to test among t groups is t(t-1)/2.  So, 3 groups require 3*2/2=3 tests, 4 groups require 
4*3/2=6 tests, 5 groups require 5*4/2=10 tests, etc.   

According to Bonferroni, testing among 4 groups (α=0.05) would have an upper bound of 6*0.05=0.30 
and among 5 groups the probability of error is up to 10*0.5=0.50.  At 20 groups we reach 1.00 or 
100 percent, and it becomes obvious that Bonferroni is overly conservative.  Consider 100 tests of 
1000 tests.   

But it makes one important point.  More tests results a greater probability of error and this is not 
reflected in our selection of the α probability.  So we need a test that will test multiple groups and 
only have a probability of error of α for all groups.   
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Carlo Emilio Bonferroni, 28 Jan 1892 (Bergamo, Italy) 18 Aug 1960 in Florence, Italy.  

 
 

Enter R. A. Fisher!  

 
 

What advantages do we get from combining the data into a single test?  First the single decision making 
test is an advantage in and of itself because we have a test with a single α value.  Second, by 
combining our groups into a single group we will potentially have more observations from which to 
estimate our variance and more degrees of freedom in doing tests.   

What is Analysis of Variance?  You will recall that we previously looked at the t-test and saw that for 
two or more means we could potentially pool the variances.  This provides a single, superior 
estimate of the variance and a variance with more degrees of freedom for testing hypotheses.  This 
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can be extended to more than the two means for the t-test.  A pooled variances is just a weighted 
mean where  

For two groups, 
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Recall that the standard error (√ variance of the mean) was estimated as Y
SS

n
= .  It seems odd that 

we cannot estimate variances from a single observation, but we can estimate the variance of the 
mean or a sample from a single sample.  We can because we know the relationship between the 
variance of the observations and the variances of a mean of n observations,

22
Y
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But, could we estimate the variance of the means from several samples with different means?  What if 
we had several means ( 1 2 3 4,  ,  ,  ,  ..., tY Y Y Y Y ) and we calculated the variance of these means?  
Would this give us the same “variance of the means”?  Yes, IF the samples are all drawn from the 
same population and have the same mean, the estimate of Ys  should be the same whether it is 

estimated as 
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This being the case, Fisher reasoned, if the null hypothesis is true (H0: µ1 = µ2 = µ3 = ... = µτ), then the 

two estimates should be the same.  This is what is required for a test of hypothesis, that our known 
distribution of the test statistic be true if the null hypothesis is true.  If the means are not equal then 
the estimate will not be Ys , it will be some larger value (since the means are different).   The 
hypotheses are then H0: µ1 = µ2 = µ3 = . . . = µk ) versus the alternative (some  µi is different).  For 
our treatments in the mouse diet study we would state our null hypothesis as H0: µA = µB = µC = µD 
= µE versus the alternative (some  diet is different). 
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Finally, we already have a good estimate of variance ( 2

pS ).  Now we have a second, independent 

estimate of variance from the means, since Y
SS

n
=  then 2 2( )YS S n= .  If the null hypothesis is 

true these should estimate the same variance.  To test for equality of two variances we use an F test.   

Group

0

Residuals

 
So, Analysis of Variance consists of two estimates of variances.  One is obtained by pooling the 

variances from within each group (within group variance) and the other is calculated between the 
groups as the variance of the means (between or among group variance).  The calculations are not 
particularly complicated.   

Within group variance:
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Between group variance: 
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These calculations are usually expressed in an Analysis of Variance (ANOVA) table.  This is the format 
produced by SAS.  The table is expressed in terms of a “Sum of Squares” which is the calculation 
of variance before dividing by the degrees of freedom.   

Within group sum of squares: 2 2 2
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Analysis of Variance source table  

Source  d.f.  Sum of Squares Mean Square  F test 

Between  t–1 SSBetween  SSBetween / (t–1) MSBetween / MSWithin  

Within  t(n–1) SSWithin SSWithin / t(n–1)  

Total  tn–1  SSTotal   

 

For the Mouse Life expectancy problem in SAS see example  

PROC GLM gives a traditional ANOVA table 
                             Sum of 
Source             DF       Squares   Mean Square   F Value   Pr > F 
Model               5   12733.94181    2546.78836     57.10   <.0001 
Error             343   15297.41532      44.59888 
Corrected Total   348   28031.35713 
 

PROC MIXED separates “fixed” effects (most treatments) from random effects (all errors and some 
treatments) 

Covariance Parameter Estimates 
Cov Parm     Estimate 
Residual      44.5989 
 
Type 3 Tests of Fixed Effects 
              Num     Den 
Effect         DF      DF    F Value    Pr > F 
diet            5     343      57.10    <.0001 
 

Note that the standard deviation (MSE or Residual variance) is calculated with a pooled estimate across 
all of the groups.  The original total number of observations in the mousefeed dataset was 349.  The 
pooled variance will have 349 minus one d.f. for each mean fitted, one for each of the 6 groups.  
The resulting d.f. for the pooled error is 349 – 6 = 343.   

 

Expected mean squares 

When we calculate 2
pS  we are estimating 2σ , the random variation.   

When we estimate 2
YS  we are also estimating 

2

n
σ  which when multiplied by n will provide a second 

estimate of 2σ  if the null hypothesis is true.  If the null hypothesis is not true there is some 

additional variation in this estimate, 2
τσ  variation due to the treatments.  This is then 

2 2

n τ
σ σ+ .  

When multiplied by n we have 2 2n τσ σ+ . 
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The F test is then 
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sum of squares does not estimate a variance, so the F test is 
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We can plot the results (see SAS) and get the following.  The plot below is from your book. 

 
ANOVA tells us there are differences among the mean survival for the treatments.  The logical next step 

is to determine which diets are different from which other diets.  This is in Chapter 6, so we will 
com back to this example.    

 

Assumptions and Robustness  

The assumptions are :  

1) Normality – normality is assumed, though the analysis is “robust” and tends to perform well if the 
distribution is symmetric.  Strongly skewed distributions are problematic.   

2) Independence – this assumption is achieved in part by randomization.  In some cases a lack of 
independence can be addressed by some statistical applications.   

3) Homogeneity of variance – since the variances from the different treatments are pooled into a single 
variance this assumption is needed.  Some newer analyses allow the fitting of different variances to 
the treatments.   

4) Your text book mentions the need to avoid severe outliers.  This is true, but I do not consider it a 
separate assumption.  I think of it as a disturbance in the assumption of a normal distribution.   

The term “robust” refers to the fact that the tests of hypothesis tend to perform well even if the 
assumptions are violated to some degree, as long as the violation is not severe.   
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Checking the assumptions with SAS  

There are several applications that will help to check if the assumptions have been met.  The first is a 
plot of the residuals on the means.   

 
 

From these we look for the following:  

1) If there is no problem the residuals should appear to be scattered at random about zero.  Residual 
plots often have a reference line drawn at zero.   

2) One potential problem is non-homogeneous variance.  If this is present we may see increasing (or 
decreasing) scatter among the points at larger values of the means.   

3) Another indicator of non-homogeneous variance occurs when we have large differences in the scatter 
of the points at different values of the mean.  It is not necessary that the variance only increase or 
decrease with the mean.  

4) If the data is truly independent the plot of the data in the order taken, or in chronological order, should 
also appear to be random scatter.  Certain problems, such as learning processes and other factors 
that may occur over time, can cause a pattern (increasing or decreasing) to occur over time.  
Randomization or inclusion of additional variables may help solve this type of problem,   
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Other problems that can be detected with residual plots include the following:  

1) Outliers 
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2) Curvature (more applicable to regression) Group Mean
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3) Need for additional variables  
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Data for  freshmen and sophomores in 8 treatment groups  

 

 

 


