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Chapter 10 : Inferential tools for Multiple Regression 
A note on regression analysis in SAS –In SAS, regression can be done in PROC REG, PROC GLM, 

PROC MIXED and numerous other specialty procedures.  PROC GLM has an advantage in 
dealing with dummy or indicator variables because these variables can be set up automatically 
when listed in a CLASS statement.   

 PROC REG has the advantage of having many special regression diagnostic tools and good 
facilities for testing hypotheses about the regression coefficients (CLB) and producing 
confidence intervals.   

 PROC MIXED is a relatively new procedure that has some aspects of both REG and GLM.  This 
procedure has a CLASS statement and will handle dummy variable the same as GLM.  This 
procedure also has some of the regression diagnostics available in REG and facilities for 
confidence intervals.  This procedure does not normally produce sums of squares.   

The major elements discussed in Chapter 10 (statistical inference) are discussed in the example below.   
Many of the usual diagnostics usually included in our regression analysis are not germane to the 
discussion and have been omitted from this handout, but are included in the SAS program posted 
on the WWW.   

Bat echolocation example.   
Data is given for the energy expenditure for selected species of echolocating bats, non-echolocating bats 

and birds.  The energy expenditure for flight is a function of the mass of the animal.  The 
question here is “Do bats that use echolocation expend more energy for flight than animals that 
do not use echolocation?”   

Plots of the data are given below where the echolocating bats are assigned type=3, non-echolocating bats 
are type=1 and birds are type=2.   

Plot of Expenditure*Mass.  Symbol is value of Type. 
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The regression analysis was run on Expenditure (the dependent variable) and mass (the quantitative 
independent variable).  Indicator variables were included for the types (TypeNON=1 for non-
echolocating bats, 0 otherwise; TypeBird=1 for birds, 0 otherwise) along with a the interaction of 
the indicator variables with the quantitative variable mass.  Major results are given below.   

Analysis of Variance 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5     3367.37636      673.47527      26.50    <.0001 
Error                    14      355.73236       25.40945 
Corrected Total          19     3723.10872 
 
Root MSE              5.04078    R-Square     0.9045 
Dependent Mean       19.51800    Adj R-Sq     0.8703 
Coeff Var            25.82631 
 

Plot of resid*Mass.  Symbol is value of Type. 
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Tests for Normality 
Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W     0.870782    Pr < W      0.0121 
Kolmogorov-Smirnov    D     0.193724    Pr > D      0.0474 
Cramer-von Mises      W-Sq  0.170174    Pr > W-Sq   0.0118 
Anderson-Darling      A-Sq  1.023665    Pr > A-Sq   0.0087 
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The same analysis was then rerun using the logarithm of expenditure and the log of mass with the 
following results.   

Analysis of Variance 
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
Model                     5       29.46993        5.89399     163.44    <.0001 
Error                    14        0.50487        0.03606 
Corrected Total          19       29.97480 
 
Root MSE              0.18990    R-Square     0.9832 
Dependent Mean        2.48220    Adj R-Sq     0.9771 
Coeff Var             7.65047 
 

Plot of resid*Mass.  Symbol is value of Type. 
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Tests for Normality 
Test                  --Statistic---    -----p Value------ 
Shapiro-Wilk          W      0.96598    Pr < W      0.6688 
Kolmogorov-Smirnov    D     0.097033    Pr > D     >0.1500 
Cramer-von Mises      W-Sq  0.032292    Pr > W-Sq  >0.2500 
Anderson-Darling      A-Sq  0.236314    Pr > A-Sq  >0.2500 

 

In comparing the non-log transformed analysis to the log transformed analysis, clearly the log 
transformation was a superior model terms of the F test of the relationship (F = 26.50 versus 
163.44), the R2 value (0.9045 versus 0.9832) the homogeneity (as indicated by the residual plots) 
and in meeting the assumption of normality (P>W = 0.0121 versus 0.6688).  The analysis and its 
interpretation will proceed using the logarithm transformed values.   
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Inference on regression coefficients – many research objectives investigated by regression can be 
addressed with hypotheses tests or confidence intervals.  Most of these issues were discussed in 
simple linear regression and extend to multiple regression fairly easily.   

Least squares estimates and standard errors – These estimates are readily available in the SAS 
output.  These are produced by default in PROC REG and can be requested with the option 
“solution” added to the model statement of PROC GLM and PROC MIXED.  Confidence 
intervals on the estimates can also be requested in PROC REG and the α values specified (α = 
0.05 by default).   

Parameter Estimates 
                   Parameter     Standard 
Variable     DF     Estimate        Error    t Value    Pr > |t|     95% Confidence Limits 
Intercept     1     -1.47052      0.24767      -5.94      <.0001     -2.00172     -0.93932 
LMass         1      0.80466      0.08668       9.28      <.0001      0.61874      0.99058 
TypeNON       1      1.26807      1.28542       0.99      0.3406     -1.48888      4.02502 
TypeBIRD      1     -0.11032      0.38474      -0.29      0.7785     -0.93551      0.71487 
LMassNON      1     -0.21487      0.22362      -0.96      0.3529     -0.69450      0.26475 
LMassBird     1      0.03071      0.10283       0.30      0.7696     -0.18984      0.25127 
 

In our example the first question to ask is if the energy expenditure indeed is a function of mass, as one 
would expect.  The test of the regression coefficient on measuring expenditure per mass has a P-
value of 0.0126, so there does appear to be a correlation between mass and energy usage.   

The other regression coefficients fit intercept differences and slope differences as follows.   

0 1 1 2 2 3 3 4 1 2 5 1 3i i i i i i i i iY X X X X X X Xβ β β β β β ε= + + + + + + ,  

  where  X1 is the quantitative variable, mass  
  X2 and X3 are dummy variables for non-echolocating bats and birds  
  X4 and X5 are interactions of the two dummy variables with the quantitative variable  

Using simpler notation, 
0 1 2 3 4 5i MASSi NONECHOi BIRDSi MASSi NONECHOi MASSi BIRDSi iY X X X X X X Xβ β β β β β ε= + + + + + + ,  

For the group getting a 0 for both dummy variables (echolocating bats) the model reduces to 
0 1i MASSi iY Xβ β ε= + +  

When X2 = 1, indicating a non-echolocating bat the model reduces to 0 2 1 4( ) ( )i MASSi iY Xβ β β β ε= + + + + , 
so β2 is the difference in intercepts between the two bat types and β4 is the slope difference 

When X3 = 1, indicating a bird the model reduces to 0 3 1 5( ) ( )i MASSi iY Xβ β β β ε= + + + + , so β3 is the 
difference in intercepts between echolocating bats and birds while β5 is the slope difference  

Least squares estimates and standard errors for each of these parameters are given in the SAS output, 
along with the test of each estimate against an hypothesized value of zero.   

So, do non-echolocating bats differ from echolocating bats (H0: β3 = 0)?  To test the intercept adjustment 
only, a model should be fitted without the slope.  The parameter estimates are the same as above, 
but β4 and β5 are not included. Estimates for this model are given below.   

Parameter Estimates 
                   Parameter     Standard 
Variable     DF     Estimate        Error    t Value    Pr > |t|     95% Confidence Limits 
Intercept     1     -1.49770      0.14987      -9.99      <.0001     -1.81540     -1.17999 
LMass         1      0.81496      0.04454      18.30      <.0001      0.72053      0.90938 
TypeNON       1     -0.07866      0.20268      -0.39      0.7030     -0.50832      0.35100 
TypeBIRD      1      0.02360      0.15760       0.15      0.8828     -0.31050      0.35770 
 

The value of β3 is the estimated difference non-echolocating bats and echolocating bats.  The difference 
in intercepts (without slopes in the model) is given by TypeNON = 0.07866.  This value 
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indicates that the line for non-echolocating bats is lower (since it is negative) by –0.079 energy 
units than the line for echolocating bats. When tested against zero, the P-value = 0.7030.  
Therefore, we find no difference in the intercepts, or levels, between the two types of bats.  A 
confidence interval on the true value of the parameter is also available in SAS, and was 
calculated as 3( - 0.50832    0.35100 ) 0.95P β≤ ≤ = .   

The estimated values and their significance depend on what other values are included in the 
model.  The same hypothesis test (H0: β3 = 0) will be different if done after the interactions are 
included in the model.  With the interactions present the estimate was 1.26807 (note the change 
of sign).  The value was also not significantly different from zero (P = 0.3406) and the 
confidence interval is 3( -1.48888    4.02502 ) 0.95P β≤ ≤ = .   

Tests and confidence intervals for linear combinations of coefficients.  In SAS PROC REG the 
TEST statement can test linear combinations of parameter estimates.  A common approach with 
group, or indicator variables, is to test them jointly, in groups.  PROC GLM and PROC MIXED 
will do this automatically.  However, PROC REG has no CLASS statement and tests each term 
in the model individually.  To test H0: β2 = β3 =0, or the equivalent H0: β2 = 0 and β3 =0, use the 
test statement would be  “TEST TypeNON = TypeBird = 0;”.  The results of this test are 
given below.   

 Joint test of intercepts with slope interactions in the model.   
Test Test_of_intercepts Results for Dependent Variable LExpend 
Source             DF    Mean Square    F Value    Pr > F 
Numerator           2        0.02061       0.57    0.5773 
Denominator        14        0.03606 
 

 Joint test of intercepts with slope interactions in the model.   
Test Test_of_intercepts Results for Dependent Variable LExpend 
Source             DF    Mean Square    F Value    Pr > F 
Numerator           2        0.01479       0.43    0.6593 
Denominator        16        0.03458 
 

 Joint test of slope interactions – The interactions with the dummy variables would also be 
tested jointly, usually with the intercepts in the modle.  To test H0: β4 = β5 =0, the test statement 
would be  “TEST LMassNON = LMassBird = 0;”.  The results of this test are given 
below.   
Test Test_of_slopes Results for Dependent Variable LExpend 
Source             DF    Mean Square    F Value    Pr > F 
Numerator           2        0.02422       0.67    0.5265 
Denominator        14        0.03606 
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PROC GLM can accomplish many of the same tests more easily with the CLASS statement.  Results for 
the SAS statements “PROC GLM DATA=BatDat; class Type; MODEL LExpend = 
LMass Type Type*LMass / solution;” are given below.  Note that the estimates of 
the joint tests and individual tests are all the same.   

Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
LMass                        1     29.39190909     29.39190909     815.04    <.0001 
Type                         2      0.02957359      0.01478680       0.41    0.6713 
LMass*Type                   2      0.04844954      0.02422477       0.67    0.5265 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
LMass                        1      3.37875389      3.37875389      93.69    <.0001 
Type                         2      0.04122472      0.02061236       0.57    0.5773 
LMass*Type                   2      0.04844954      0.02422477       0.67    0.5265 
 
                                       Standard 
Parameter            Estimate             Error    t Value    Pr > |t| 
Intercept        -1.470515265 B      0.24767033      -5.94      <.0001 
LMass             0.804657049 B      0.08668453       9.28      <.0001 
Type       1      1.268067693 B      1.28542004       0.99      0.3406 
Type       2     -0.110322504 B      0.38474216      -0.29      0.7785 
Type       3      0.000000000 B       .                .         . 
LMass*Type 1     -0.214874992 B      0.22362264      -0.96      0.3529 
LMass*Type 2      0.030713281 B      0.10283304       0.30      0.7696 
LMass*Type 3      0.000000000 B       .                .         . 
 
 

Redefining the reference level –  The reference level is that level of the categorical treatment that is not 
coded with a “1”.  As a result, it is the level against which all other levels are compared.   In the 
fits with PROC REG above  the references level was “echolocating bats”.  The dummy variables 
were coded for non-echolocating bats and birds, so β2 and β3 were differences between these 
groups and the reference level, echolocating bats.  Likewise, the parameter estimates for β 4 and 
β 5, the interactions of the two dummy variables with the quantitative variable were comparisons 
of non-echolocating bats and birds to the references level, echolocating.   

  The GLM procedure automatically codes the group variable with dummy variables.  The default 
reference level chosen as the reference level is the one in the last alphanumeric position.  In the 
example above the first dummy variable is for type = 1 (non- echolocating bats), and the second 
for type = 2 (birds).  These both use echolocating bats as a reverence level, since type=3 is the 
last alphanumeric position.  Since the same reference level was chosen for the PROC REG 
coding, the results are the same.   

  It should be noted that the choice of a reference level is arbitrary.  Obviously, if there is one level 
against which all others are to be compared then this level should be the reference level.   The 
choice does not affect the joint tests,   

Notes on the R2 statistic – The text suggest that the value of R2 can always be made 100% by adding 
enough independent variables.  However, their choice of example is a little unfortunate, since it 
is a polynomial.  What is true about polynomials is that if there are k different values of the 
independent variable (X), each with a single observation (ni–1), a polynomial of order k will 
provide a perfect fit to all points.  If, however, there are multiple values at any of the values of 
the X variable (ni>1) the fit will not be perfect (100%).  If the number of replicates at different 
values of X increase the value of R2 will decrease.   

  It is also true that if there are n different observations in a dataset, and the investigator attempts 
to fit this data with a model having n–1 variables, the fit will be “perfect” in that there will be no 
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error term.  That means no tests and not confidence intervals, so it is not “perfect” in a statistical 
sense.   

Transformed data – When using transformed data as in the analysis above, all analyses are done on the 
data in the transformed form.  This means all tests of hypotheses and the calculation of all 
estimates and confidence intervals.  Once calculated, estimates and the upper and lower limit sof 
the confidence intervals can be back-transformed or detransformed.  The reason that confidence 
values must be calculated on the transformed data is that the estimates of standard errors cannot 
be detransformed.   

Scope of inference – At the end of the “bat echolocation” analysis the text discusses scope of inference.  
The text points out that statistical inference should be restricted to the species used, and that any 
inference to a larger population would be speculative.  This is somewhat related to a concept that 
will be very important when we finish regression and return to Analysis of Variance.  If the 
material included in a study includes all levels of a treatment or all categories of interest in the 
treatment, then the treatment is called a “FIXED” effect, and conclusions are limited to those 
levels that were included.  If, however, the treatment levels are randomly selected from a large 
number of levels they are called “RANDOM” effects.  These represent the variability among all 
levels, and we can draw some inferences to the whole population.  More on this later when we 
continue our discussion of Analysis of Variance.   

 

Extra SS  
Should tests of the intercepts be done before or after a slope is present in the model?  Should the tests of 

slopes be done before or after any tests of intercepts?  Actually, this depends on the objectives of 
the study and the hypotheses the investigator wishes to test.   

  In our previous discussion of analysis of covariance we discussed the graphic below.   
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In this graph each arrow and letter represents the differences between a full and a reduced model.  
Assuming we start with a correction factor, the decision to then add indicator variables (arrow b) 
or a quantitative variable (arrow a) depends on what the investigator believes would be the most 
meaningful full model.  This full model then becomes the reduced model when additional 
variables are entered, following arrow c or d.   

At each step along this graphic we have a full and reduced model and a corresponding test an extra sum 
of squares.  Note that the graphic does not depict adding the dummy variables one at a time, 
these are usually treated in groups.  These tests are best represented by the tests in the GLM or 
MIXED model analysis.   

The extra SS in the PROC GLM are as follows.   

 
Source          DF       Type I SS     Mean Square    F Value    Pr > F    TEST 
LMass            1     29.39190909     29.39190909     815.04    <.0001      a 
Type             2      0.02957359      0.01478680       0.41    0.6713      c 
LMass*Type       2      0.04844954      0.02422477       0.67    0.5265      f 
 
Source          DF     Type III SS     Mean Square    F Value    Pr > F     
LMass            1      3.37875389      3.37875389      93.69    <.0001     
Type             2      0.04122472      0.02061236       0.57    0.5773      g 
LMass*Type       2      0.04844954      0.02422477       0.67    0.5265     
 

Graphic  Meaning Hypothesis Extra SS 
a  Test of a slope  H0: β1 = 0  SSX1|X0  
b  Test of separate means or levels  H0: β2 = β3 = 0   SSX2, X3|X0  
c  Test of separate intercepts or levels  H0: β2 = β3 = 0   SSX2, X3|X0, X1  
d  Test of a slope  H0: β1 = 0  SSX1|X0, X2, X3  
e  Test of separate slopes  H0: β4 = β5 = 0   SSX4, X5|X0, X1  
f  Test of separate slopes  H0: β4 = β5 = 0   SSX4, X5|X0, X1, X2, X3  
g  Test of separate intercepts  H0: β2 = β3 = 0   SSX2, X3|X0, X1, X4, X5  

 

In the expression of the previous tests, note that various “hypotheses” are indistinguishable.  Again, the 
results of a test depend on the other variables included in the model.  For example, the 
hypotheses for a and c are the same, but from the Extra SS we can see that in a the analysis is a 
simple linear regression with only the intercept and slope.  In c the slope is also fitted, but the 
model is adjusted for two intercepts instead of one.  The results can be very different.   

The extra SS and tests b, d and e are not estimated in the analysis above.  To get these tests the GLM 
would be rerun with the order of the first two independent variables reversed (e.g. (Type LMass 
LMass*Type).  This would give tests for b and d instead of a and c.  To get the test labeled “e”, 
the model would have to include the interaction before the group variable term (e.g. LMass 
LMass*Type Type).   

 

 

 


